whitphx HF staff commited on
Commit
4a41e28
·
verified ·
1 Parent(s): d7a8ca9

Update index.html

Browse files
Files changed (1) hide show
  1. index.html +12 -8
index.html CHANGED
@@ -24,15 +24,19 @@ from transformers_js import import_transformers_js, as_url
24
  import gradio as gr
25
 
26
 
 
 
27
  transformers = await import_transformers_js()
28
  AutoProcessor = transformers.AutoProcessor
29
  AutoModel = transformers.AutoModel
30
  RawImage = transformers.RawImage
31
 
32
- processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c');
33
- # TODO: Resize the input image
 
 
34
 
35
- model = await AutoModel.from_pretrained('Xenova/yolov9-c');
36
 
37
 
38
  async def detect(image_path):
@@ -41,7 +45,7 @@ async def detect(image_path):
41
  processed_input = await processor(image)
42
 
43
  # Predict bounding boxes
44
- result = await model(images=processed_input["pixel_values"]);
45
 
46
  outputs = result["outputs"] # Tensor
47
  np_outputs = outputs.numpy() # [xmin, ymin, xmax, ymax, score, id][]
@@ -49,10 +53,10 @@ async def detect(image_path):
49
  # List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
50
  (
51
  (
52
- int(xmin),
53
- int(ymin),
54
- int(xmax),
55
- int(ymax),
56
  ),
57
  model.config.id2label[str(int(id))],
58
  )
 
24
  import gradio as gr
25
 
26
 
27
+ IMAGE_SIZE = 256;
28
+
29
  transformers = await import_transformers_js()
30
  AutoProcessor = transformers.AutoProcessor
31
  AutoModel = transformers.AutoModel
32
  RawImage = transformers.RawImage
33
 
34
+ processor = await AutoProcessor.from_pretrained('Xenova/yolov9-c')
35
+
36
+ # For this demo, we resize the image to IMAGE_SIZE x IMAGE_SIZE
37
+ processor.feature_extractor.size = { "width": IMAGE_SIZE, "height": IMAGE_SIZE }
38
 
39
+ model = await AutoModel.from_pretrained('Xenova/yolov9-c')
40
 
41
 
42
  async def detect(image_path):
 
45
  processed_input = await processor(image)
46
 
47
  # Predict bounding boxes
48
+ result = await model(images=processed_input["pixel_values"])
49
 
50
  outputs = result["outputs"] # Tensor
51
  np_outputs = outputs.numpy() # [xmin, ymin, xmax, ymax, score, id][]
 
53
  # List[Tuple[numpy.ndarray | Tuple[int, int, int, int], str]]
54
  (
55
  (
56
+ int(xmin * image.width / IMAGE_SIZE),
57
+ int(ymin * image.height / IMAGE_SIZE),
58
+ int(xmax * image.width / IMAGE_SIZE),
59
+ int(ymax * image.height / IMAGE_SIZE),
60
  ),
61
  model.config.id2label[str(int(id))],
62
  )