Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import whisper | |
from diffusers import DiffusionPipeline | |
from transformers import ( | |
WhisperForConditionalGeneration, | |
WhisperProcessor, | |
) | |
import os | |
MY_SECRET_TOKEN=os.environ.get('HF_TOKEN_SD') | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = WhisperForConditionalGeneration.from_pretrained("whispy/whisper_italian").to(device) | |
processor = WhisperProcessor.from_pretrained("whispy/whisper_italian") | |
diffuser_pipeline = DiffusionPipeline.from_pretrained( | |
"CompVis/stable-diffusion-v1-4", | |
custom_pipeline="speech_to_image_diffusion", | |
speech_model=model, | |
speech_processor=processor, | |
use_auth_token=MY_SECRET_TOKEN, | |
revision="fp16", | |
torch_dtype=torch.float16, | |
) | |
diffuser_pipeline.enable_attention_slicing() | |
diffuser_pipeline = diffuser_pipeline.to(device) | |
#ββββββββββββββββββββββββββββββββββββββββββββ | |
# GRADIO SETUP | |
title = "Speech to Diffusion β’ Community Pipeline" | |
description = """ | |
<p style='text-align: center;'>This demo can generate an image from an audio sample using pre-trained OpenAI whisper-small and Stable Diffusion.<br /> | |
Community examples consist of both inference and training examples that have been added by the community.<br /> | |
<a href='https://github.com/huggingface/diffusers/tree/main/examples/community#speech-to-image' target='_blank'> Click here for more information about community pipelines </a> | |
</p> | |
""" | |
article = """ | |
<p style='text-align: center;'>Community pipeline by Mikail Duzenli β’ Gradio demo by Sylvain Filoni & Ahsen Khaliq<p> | |
""" | |
audio_input = gr.Audio(source="microphone", type="filepath") | |
image_output = gr.Image() | |
def speech_to_text(audio_sample): | |
process_audio = whisper.load_audio(audio_sample) | |
output = diffuser_pipeline(process_audio) | |
print(f""" | |
ββββββββ | |
output: {output} | |
ββββββββ | |
""") | |
return output.images[0] | |
demo = gr.Interface(fn=speech_to_text, inputs=audio_input, outputs=image_output, title=title, description=description, article=article) | |
demo.launch() |