File size: 4,596 Bytes
c876449 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import io
import random
from typing import List, Tuple
import aiohttp
import panel as pn
from PIL import Image
from transformers import CLIPModel, CLIPProcessor
pn.extension(design="bootstrap", sizing_mode="stretch_width")
ICON_URLS = {
"brand-github": "https://github.com/holoviz/panel",
"brand-twitter": "https://twitter.com/Panel_Org",
"brand-linkedin": "https://www.linkedin.com/company/panel-org",
"message-circle": "https://discourse.holoviz.org/",
"brand-discord": "https://discord.gg/AXRHnJU6sP",
}
async def random_url(_):
pet = random.choice(["cat", "dog"])
api_url = f"https://api.the{pet}api.com/v1/images/search"
async with aiohttp.ClientSession() as session:
async with session.get(api_url) as resp:
return (await resp.json())[0]["url"]
@pn.cache
def load_processor_model(
processor_name: str, model_name: str
) -> Tuple[CLIPProcessor, CLIPModel]:
processor = CLIPProcessor.from_pretrained(processor_name)
model = CLIPModel.from_pretrained(model_name)
return processor, model
async def open_image_url(image_url: str) -> Image:
async with aiohttp.ClientSession() as session:
async with session.get(image_url) as resp:
return Image.open(io.BytesIO(await resp.read()))
def get_similarity_scores(class_items: List[str], image: Image) -> List[float]:
processor, model = load_processor_model(
"openai/clip-vit-base-patch32", "openai/clip-vit-base-patch32"
)
inputs = processor(
text=class_items,
images=[image],
return_tensors="pt", # pytorch tensors
)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image
class_likelihoods = logits_per_image.softmax(dim=1).detach().numpy()
return class_likelihoods[0]
async def process_inputs(class_names: List[str], image_url: str):
"""
High level function that takes in the user inputs and returns the
classification results as panel objects.
"""
try:
main.disabled = True
if not image_url:
yield "##### β οΈ Provide an image URL"
return
yield "##### β Fetching image and running model..."
try:
pil_img = await open_image_url(image_url)
img = pn.pane.Image(pil_img, height=400, align="center")
except Exception as e:
yield f"##### π Something went wrong, please try a different URL!"
return
class_items = class_names.split(",")
class_likelihoods = get_similarity_scores(class_items, pil_img)
# build the results column
results = pn.Column("##### π Here are the results!", img)
for class_item, class_likelihood in zip(class_items, class_likelihoods):
row_label = pn.widgets.StaticText(
name=class_item.strip(), value=f"{class_likelihood:.2%}", align="center"
)
row_bar = pn.indicators.Progress(
value=int(class_likelihood * 100),
sizing_mode="stretch_width",
bar_color="secondary",
margin=(0, 10),
design=pn.theme.Material,
)
results.append(pn.Column(row_label, row_bar))
yield results
finally:
main.disabled = False
# create widgets
randomize_url = pn.widgets.Button(name="Randomize URL", align="end")
image_url = pn.widgets.TextInput(
name="Image URL to classify",
value=pn.bind(random_url, randomize_url),
)
class_names = pn.widgets.TextInput(
name="Comma separated class names",
placeholder="Enter possible class names, e.g. cat, dog",
value="cat, dog, parrot",
)
input_widgets = pn.Column(
"##### π Click randomize or paste a URL to start classifying!",
pn.Row(image_url, randomize_url),
class_names,
)
# add interactivity
interactive_result = pn.panel(
pn.bind(process_inputs, image_url=image_url, class_names=class_names),
height=600,
)
# add footer
footer_row = pn.Row(pn.Spacer(), align="center")
for icon, url in ICON_URLS.items():
href_button = pn.widgets.Button(icon=icon, width=35, height=35)
href_button.js_on_click(code=f"window.open('{url}')")
footer_row.append(href_button)
footer_row.append(pn.Spacer())
# create dashboard
main = pn.WidgetBox(
input_widgets,
interactive_result,
footer_row,
)
title = "Panel Demo - Image Classification"
pn.template.BootstrapTemplate(
title=title,
main=main,
main_max_width="min(50%, 698px)",
header_background="#F08080",
).servable(title=title) |