File size: 8,441 Bytes
099bf4d b6b4104 099bf4d b6b4104 91efc35 b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d 91efc35 099bf4d b6b4104 91efc35 099bf4d b6b4104 91efc35 099bf4d b6b4104 099bf4d b6b4104 099bf4d 91efc35 b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d 91efc35 b6b4104 099bf4d b6b4104 099bf4d 91efc35 b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d b6b4104 099bf4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import {
SamModel,
AutoProcessor,
RawImage,
Tensor,
} from "https://cdn.jsdelivr.net/npm/@huggingface/[email protected]";
// Reference the elements we will use
const statusLabel = document.getElementById("status");
const fileUpload = document.getElementById("upload");
const imageContainer = document.getElementById("container");
const example = document.getElementById("example");
const uploadButton = document.getElementById("upload-button");
const resetButton = document.getElementById("reset-image");
const clearButton = document.getElementById("clear-points");
const cutButton = document.getElementById("cut-mask");
const starIcon = document.getElementById("star-icon");
const crossIcon = document.getElementById("cross-icon");
const maskCanvas = document.getElementById("mask-output");
const maskContext = maskCanvas.getContext("2d");
const EXAMPLE_URL =
"https://huggingface.co./datasets/Xenova/transformers.js-docs/resolve/main/corgi.jpg";
// State variables
let isEncoding = false;
let isDecoding = false;
let decodePending = false;
let lastPoints = null;
let isMultiMaskMode = false;
let imageInput = null;
let imageProcessed = null;
let imageEmbeddings = null;
async function decode() {
// Only proceed if we are not already decoding
if (isDecoding) {
decodePending = true;
return;
}
isDecoding = true;
// Prepare inputs for decoding
const reshaped = imageProcessed.reshaped_input_sizes[0];
const points = lastPoints
.map((x) => [x.position[0] * reshaped[1], x.position[1] * reshaped[0]])
.flat(Infinity);
const labels = lastPoints.map((x) => BigInt(x.label)).flat(Infinity);
const num_points = lastPoints.length;
const input_points = new Tensor("float32", points, [1, 1, num_points, 2]);
const input_labels = new Tensor("int64", labels, [1, 1, num_points]);
// Generate the mask
const { pred_masks, iou_scores } = await model({
...imageEmbeddings,
input_points,
input_labels,
});
// Post-process the mask
const masks = await processor.post_process_masks(
pred_masks,
imageProcessed.original_sizes,
imageProcessed.reshaped_input_sizes,
);
isDecoding = false;
updateMaskOverlay(RawImage.fromTensor(masks[0][0]), iou_scores.data);
// Check if another decode is pending
if (decodePending) {
decodePending = false;
decode();
}
}
function updateMaskOverlay(mask, scores) {
// Update canvas dimensions (if different)
if (maskCanvas.width !== mask.width || maskCanvas.height !== mask.height) {
maskCanvas.width = mask.width;
maskCanvas.height = mask.height;
}
// Allocate buffer for pixel data
const imageData = maskContext.createImageData(
maskCanvas.width,
maskCanvas.height,
);
// Select best mask
const numMasks = scores.length; // 3
let bestIndex = 0;
for (let i = 1; i < numMasks; ++i) {
if (scores[i] > scores[bestIndex]) {
bestIndex = i;
}
}
statusLabel.textContent = `Segment score: ${scores[bestIndex].toFixed(2)}`;
// Fill mask with colour
const pixelData = imageData.data;
for (let i = 0; i < pixelData.length; ++i) {
if (mask.data[numMasks * i + bestIndex] === 1) {
const offset = 4 * i;
pixelData[offset] = 0; // red
pixelData[offset + 1] = 114; // green
pixelData[offset + 2] = 189; // blue
pixelData[offset + 3] = 255; // alpha
}
}
// Draw image data to context
maskContext.putImageData(imageData, 0, 0);
}
function clearPointsAndMask() {
// Reset state
isMultiMaskMode = false;
lastPoints = null;
// Remove points from previous mask (if any)
document.querySelectorAll(".icon").forEach((e) => e.remove());
// Disable cut button
cutButton.disabled = true;
// Reset mask canvas
maskContext.clearRect(0, 0, maskCanvas.width, maskCanvas.height);
}
clearButton.addEventListener("click", clearPointsAndMask);
resetButton.addEventListener("click", () => {
// Reset the state
imageInput = null;
imageProcessed = null;
imageEmbeddings = null;
isEncoding = false;
isDecoding = false;
// Clear points and mask (if present)
clearPointsAndMask();
// Update UI
cutButton.disabled = true;
imageContainer.style.backgroundImage = "none";
uploadButton.style.display = "flex";
statusLabel.textContent = "Ready";
});
async function encode(url) {
if (isEncoding) return;
isEncoding = true;
statusLabel.textContent = "Extracting image embedding...";
imageInput = await RawImage.fromURL(url);
// Update UI
imageContainer.style.backgroundImage = `url(${url})`;
uploadButton.style.display = "none";
cutButton.disabled = true;
// Recompute image embeddings
imageProcessed = await processor(imageInput);
imageEmbeddings = await model.get_image_embeddings(imageProcessed);
statusLabel.textContent = "Embedding extracted!";
isEncoding = false;
}
// Handle file selection
fileUpload.addEventListener("change", function (e) {
const file = e.target.files[0];
if (!file) return;
const reader = new FileReader();
// Set up a callback when the file is loaded
reader.onload = (e2) => encode(e2.target.result);
reader.readAsDataURL(file);
});
example.addEventListener("click", (e) => {
e.preventDefault();
encode(EXAMPLE_URL);
});
// Attach hover event to image container
imageContainer.addEventListener("mousedown", (e) => {
if (e.button !== 0 && e.button !== 2) {
return; // Ignore other buttons
}
if (!imageEmbeddings) {
return; // Ignore if not encoded yet
}
if (!isMultiMaskMode) {
lastPoints = [];
isMultiMaskMode = true;
cutButton.disabled = false;
}
const point = getPoint(e);
lastPoints.push(point);
// add icon
const icon = (point.label === 1 ? starIcon : crossIcon).cloneNode();
icon.style.left = `${point.position[0] * 100}%`;
icon.style.top = `${point.position[1] * 100}%`;
imageContainer.appendChild(icon);
// Run decode
decode();
});
// Clamp a value inside a range [min, max]
function clamp(x, min = 0, max = 1) {
return Math.max(Math.min(x, max), min);
}
function getPoint(e) {
// Get bounding box
const bb = imageContainer.getBoundingClientRect();
// Get the mouse coordinates relative to the container
const mouseX = clamp((e.clientX - bb.left) / bb.width);
const mouseY = clamp((e.clientY - bb.top) / bb.height);
return {
position: [mouseX, mouseY],
label:
e.button === 2 // right click
? 0 // negative prompt
: 1, // positive prompt
};
}
// Do not show context menu on right click
imageContainer.addEventListener("contextmenu", (e) => e.preventDefault());
// Attach hover event to image container
imageContainer.addEventListener("mousemove", (e) => {
if (!imageEmbeddings || isMultiMaskMode) {
// Ignore mousemove events if the image is not encoded yet,
// or we are in multi-mask mode
return;
}
lastPoints = [getPoint(e)];
decode();
});
// Handle cut button click
cutButton.addEventListener("click", async () => {
const [w, h] = [maskCanvas.width, maskCanvas.height];
// Get the mask pixel data (and use this as a buffer)
const maskImageData = maskContext.getImageData(0, 0, w, h);
// Create a new canvas to hold the cut-out
const cutCanvas = new OffscreenCanvas(w, h);
const cutContext = cutCanvas.getContext("2d");
// Copy the image pixel data to the cut canvas
const maskPixelData = maskImageData.data;
const imagePixelData = imageInput.data;
for (let i = 0; i < w * h; ++i) {
const sourceOffset = 3 * i; // RGB
const targetOffset = 4 * i; // RGBA
if (maskPixelData[targetOffset + 3] > 0) {
// Only copy opaque pixels
for (let j = 0; j < 3; ++j) {
maskPixelData[targetOffset + j] = imagePixelData[sourceOffset + j];
}
}
}
cutContext.putImageData(maskImageData, 0, 0);
// Download image
const link = document.createElement("a");
link.download = "image.png";
link.href = URL.createObjectURL(await cutCanvas.convertToBlob());
link.click();
link.remove();
});
const model_id = "Xenova/slimsam-77-uniform";
statusLabel.textContent = "Loading model...";
const model = await SamModel.from_pretrained(model_id, {
dtype: "fp16", // or "fp32"
device: "webgpu",
});
const processor = await AutoProcessor.from_pretrained(model_id);
statusLabel.textContent = "Ready";
// Enable the user interface
fileUpload.disabled = false;
uploadButton.style.opacity = 1;
example.style.pointerEvents = "auto";
|