import gradio as gr from openai import OpenAI BASE_URL = "https://w0xtwbf2fdxe1q-8000.proxy.runpod.net/v1/chat/completions" API_KEY="SOMEHOW" # Create an OpenAI client to interact with the API server client = OpenAI( base_url=BASE_URL, api_key=API_KEY ) def predict(message, history): # Convert chat history to OpenAI format history_openai_format = [{ "role": "system", "content": "Tu es un excellent assistant IA développé par WAY2CALL pour faire des évaluations en JSON des audios transcrits." }] for i, (human, assistant) in enumerate(history): if i % 2 == 0: history_openai_format.append({"role": "user", "content": human}) else: history_openai_format.append({"role": "assistant", "content": assistant}) history_openai_format.append({"role": "user", "content": message}) # Create a chat completion request and send it to the API server stream = client.chat.completions.create( model="way2call/way2call-7b-evaluation-instruct", # Model name to use messages=history_openai_format, # Chat history temperature=0.1, # Temperature for text generation stream=True, # Stream response ) # Read and return generated text from response stream partial_message = "" for chunk in stream: partial_message += (chunk.choices[0].delta.content or "") yield partial_message # Create and launch a chat interface with Gradio gr.ChatInterface(predict).queue().launch()