Spaces:
Sleeping
Sleeping
wavesoumen
commited on
Commit
•
21be376
1
Parent(s):
f7cdb03
Update app.py
Browse files
app.py
CHANGED
@@ -2,9 +2,15 @@ import streamlit as st
|
|
2 |
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import nltk
|
4 |
from youtube_transcript_api import YouTubeTranscriptApi
|
|
|
|
|
|
|
|
|
5 |
|
6 |
# Download NLTK data
|
7 |
nltk.download('punkt')
|
|
|
|
|
8 |
|
9 |
# Load models and tokenizers
|
10 |
summary_model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
@@ -24,6 +30,15 @@ def summarize_text(text, prefix):
|
|
24 |
result = summary_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
25 |
return result[0]
|
26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
# Function to fetch YouTube transcript
|
28 |
def fetch_transcript(url):
|
29 |
video_id = url.split('watch?v=')[-1]
|
@@ -34,19 +49,61 @@ def fetch_transcript(url):
|
|
34 |
except Exception as e:
|
35 |
return str(e)
|
36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
37 |
# Streamlit app title
|
38 |
-
st.title("Multi-purpose
|
39 |
|
40 |
# Create tabs for different functionalities
|
41 |
-
tab1, tab2, tab3, tab4 = st.tabs(["Text Summarization", "Text Tag Generation", "Image Captioning", "YouTube Transcript"])
|
42 |
|
43 |
# Text Summarization Tab
|
44 |
with tab1:
|
45 |
-
st.header("
|
46 |
|
47 |
input_text = st.text_area("Enter the text to summarize:", height=300)
|
48 |
|
49 |
-
if st.button("Generate
|
50 |
if input_text:
|
51 |
title1 = summarize_text(input_text, 'summary: ')
|
52 |
title2 = summarize_text(input_text, 'summary brief: ')
|
@@ -59,17 +116,14 @@ with tab1:
|
|
59 |
|
60 |
# Text Tag Generation Tab
|
61 |
with tab2:
|
62 |
-
st.header("
|
63 |
|
64 |
text = st.text_area("Enter the text for tag extraction:", height=200)
|
65 |
|
66 |
if st.button("Generate Tags"):
|
67 |
if text:
|
68 |
try:
|
69 |
-
|
70 |
-
output = tag_model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64)
|
71 |
-
decoded_output = tag_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
72 |
-
tags = list(set(decoded_output.strip().split(", ")))
|
73 |
st.write("**Generated Tags:**")
|
74 |
st.write(tags)
|
75 |
except Exception as e:
|
@@ -83,7 +137,8 @@ with tab3:
|
|
83 |
|
84 |
image_url = st.text_input("Enter the URL of the image:")
|
85 |
|
86 |
-
if
|
|
|
87 |
try:
|
88 |
st.image(image_url, caption="Provided Image", use_column_width=True)
|
89 |
caption = captioner(image_url)
|
@@ -108,3 +163,36 @@ with tab4:
|
|
108 |
st.error(f"An error occurred: {transcript}")
|
109 |
else:
|
110 |
st.warning("Please enter a URL.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
3 |
import nltk
|
4 |
from youtube_transcript_api import YouTubeTranscriptApi
|
5 |
+
import torch
|
6 |
+
from textblob import TextBlob
|
7 |
+
from nltk.corpus import stopwords
|
8 |
+
from nltk.tokenize import word_tokenize
|
9 |
|
10 |
# Download NLTK data
|
11 |
nltk.download('punkt')
|
12 |
+
nltk.download('averaged_perceptron_tagger')
|
13 |
+
nltk.download('stopwords')
|
14 |
|
15 |
# Load models and tokenizers
|
16 |
summary_model_name = 'utrobinmv/t5_summary_en_ru_zh_base_2048'
|
|
|
30 |
result = summary_tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
31 |
return result[0]
|
32 |
|
33 |
+
# Function to generate tags
|
34 |
+
def generate_tags(text):
|
35 |
+
with torch.no_grad():
|
36 |
+
inputs = tag_tokenizer(text, max_length=256, truncation=True, return_tensors="pt")
|
37 |
+
output = tag_model.generate(**inputs, num_beams=8, do_sample=True, min_length=10, max_length=64, num_return_sequences=1)
|
38 |
+
decoded_output = tag_tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
39 |
+
tags = list(set(decoded_output.strip().split(", ")))
|
40 |
+
return tags
|
41 |
+
|
42 |
# Function to fetch YouTube transcript
|
43 |
def fetch_transcript(url):
|
44 |
video_id = url.split('watch?v=')[-1]
|
|
|
49 |
except Exception as e:
|
50 |
return str(e)
|
51 |
|
52 |
+
# Function to extract keywords and generate hashtags
|
53 |
+
def extract_keywords(content):
|
54 |
+
text = content.lower()
|
55 |
+
sentences = nltk.sent_tokenize(text)
|
56 |
+
keywords = []
|
57 |
+
for sentence in sentences:
|
58 |
+
words = nltk.word_tokenize(sentence)
|
59 |
+
tags = nltk.pos_tag(words)
|
60 |
+
for word, tag in tags:
|
61 |
+
if tag.startswith('NN'):
|
62 |
+
keywords.append(word)
|
63 |
+
return keywords
|
64 |
+
|
65 |
+
def generate_hashtags(content, max_hashtags=10):
|
66 |
+
keywords = extract_keywords(content)
|
67 |
+
hashtags = []
|
68 |
+
for keyword in keywords:
|
69 |
+
hashtag = "#" + keyword
|
70 |
+
if len(hashtag) <= 20:
|
71 |
+
hashtags.append(hashtag)
|
72 |
+
return hashtags[:max_hashtags]
|
73 |
+
|
74 |
+
# Function to extract point of view
|
75 |
+
def extract_point_of_view(text):
|
76 |
+
stop_words = set(stopwords.words('english'))
|
77 |
+
words = word_tokenize(str(text))
|
78 |
+
filtered_words = [word for word in words if word.casefold() not in stop_words]
|
79 |
+
text = ' '.join(filtered_words)
|
80 |
+
|
81 |
+
blob = TextBlob(text)
|
82 |
+
polarity = blob.sentiment.polarity
|
83 |
+
subjectivity = blob.sentiment.subjectivity
|
84 |
+
|
85 |
+
if polarity > 0.5:
|
86 |
+
point_of_view = "Positive"
|
87 |
+
elif polarity < -0.5:
|
88 |
+
point_of_view = "Negative"
|
89 |
+
else:
|
90 |
+
point_of_view = "Neutral"
|
91 |
+
|
92 |
+
return point_of_view
|
93 |
+
|
94 |
# Streamlit app title
|
95 |
+
st.title("Multi-purpose AI App: WAVE_AI")
|
96 |
|
97 |
# Create tabs for different functionalities
|
98 |
+
tab1, tab2, tab3, tab4, tab5 = st.tabs(["Text Summarization", "Text Tag Generation", "Image Captioning", "YouTube Transcript", "LinkedIn Post Analysis"])
|
99 |
|
100 |
# Text Summarization Tab
|
101 |
with tab1:
|
102 |
+
st.header("Summarize Title Maker")
|
103 |
|
104 |
input_text = st.text_area("Enter the text to summarize:", height=300)
|
105 |
|
106 |
+
if st.button("Generate the Title"):
|
107 |
if input_text:
|
108 |
title1 = summarize_text(input_text, 'summary: ')
|
109 |
title2 = summarize_text(input_text, 'summary brief: ')
|
|
|
116 |
|
117 |
# Text Tag Generation Tab
|
118 |
with tab2:
|
119 |
+
st.header("Tag Generation from Text")
|
120 |
|
121 |
text = st.text_area("Enter the text for tag extraction:", height=200)
|
122 |
|
123 |
if st.button("Generate Tags"):
|
124 |
if text:
|
125 |
try:
|
126 |
+
tags = generate_tags(text)
|
|
|
|
|
|
|
127 |
st.write("**Generated Tags:**")
|
128 |
st.write(tags)
|
129 |
except Exception as e:
|
|
|
137 |
|
138 |
image_url = st.text_input("Enter the URL of the image:")
|
139 |
|
140 |
+
if st.button("Analysis Image"):
|
141 |
+
if image_url:
|
142 |
try:
|
143 |
st.image(image_url, caption="Provided Image", use_column_width=True)
|
144 |
caption = captioner(image_url)
|
|
|
163 |
st.error(f"An error occurred: {transcript}")
|
164 |
else:
|
165 |
st.warning("Please enter a URL.")
|
166 |
+
|
167 |
+
# LinkedIn Post Analysis Tab
|
168 |
+
with tab5:
|
169 |
+
st.header("LinkedIn Post Analysis AI")
|
170 |
+
|
171 |
+
text = st.text_area("Enter the LinkedIn Post:")
|
172 |
+
|
173 |
+
if st.button("Analyze:"):
|
174 |
+
if text:
|
175 |
+
# Generate tags
|
176 |
+
tags = generate_tags(text)
|
177 |
+
st.subheader("The Most Tracked KeyWords:")
|
178 |
+
st.write(tags)
|
179 |
+
|
180 |
+
# Generate summaries
|
181 |
+
summary1 = summarize_text(text, 'summary: ')
|
182 |
+
summary2 = summarize_text(text, 'summary brief: ')
|
183 |
+
st.subheader("Summary Title 1:")
|
184 |
+
st.write(summary1)
|
185 |
+
st.subheader("Summary Title 2:")
|
186 |
+
st.write(summary2)
|
187 |
+
|
188 |
+
# Generate hashtags
|
189 |
+
hashtags = generate_hashtags(text)
|
190 |
+
st.subheader("Generated Hashtags for the Post")
|
191 |
+
st.write(hashtags)
|
192 |
+
|
193 |
+
# Extract point of view
|
194 |
+
point_of_view = extract_point_of_view(text)
|
195 |
+
st.subheader("Tone of the Post:")
|
196 |
+
st.write(point_of_view)
|
197 |
+
else:
|
198 |
+
st.warning("Please enter text to analyze.")
|