Spaces:
Sleeping
Sleeping
File size: 5,993 Bytes
91eaff6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Sample application to demo the `TextGraphs` library.
see copyright/license https://huggingface.co./spaces/DerwenAI/textgraphs/blob/main/README.md
"""
import asyncio
import sys # pylint: disable=W0611
import traceback
import time
import typing
from icecream import ic # pylint: disable=E0401
from pyinstrument import Profiler # pylint: disable=E0401
import matplotlib.pyplot as plt # pylint: disable=E0401
import pandas as pd # pylint: disable=E0401
import textgraphs
if __name__ == "__main__":
SRC_TEXT: str = """
Werner Herzog is a remarkable filmmaker and an intellectual originally from Germany, the son of Dietrich Herzog.
After the war, Werner fled to America to become famous.
"""
## set up
## NB: profiler raises handler exceptions when `concur = False`
debug: bool = False # True
concur: bool = True # False
profile: bool = True # False
if profile:
profiler: Profiler = Profiler()
profiler.start()
try:
start_time: float = time.time()
tg: textgraphs.TextGraphs = textgraphs.TextGraphs(
factory = textgraphs.PipelineFactory(
spacy_model = textgraphs.SPACY_MODEL,
ner = None, #textgraphs.NERSpanMarker(),
kg = textgraphs.KGWikiMedia(
spotlight_api = textgraphs.DBPEDIA_SPOTLIGHT_API,
dbpedia_search_api = textgraphs.DBPEDIA_SEARCH_API,
dbpedia_sparql_api = textgraphs.DBPEDIA_SPARQL_API,
wikidata_api = textgraphs.WIKIDATA_API,
),
infer_rels = [
textgraphs.InferRel_OpenNRE(
model = textgraphs.OPENNRE_MODEL,
max_skip = textgraphs.MAX_SKIP,
min_prob = textgraphs.OPENNRE_MIN_PROB,
),
textgraphs.InferRel_Rebel(
lang = "en_XX",
mrebel_model = textgraphs.MREBEL_MODEL,
),
],
),
)
duration: float = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: set up")
## NLP parse
start_time = time.time()
pipe: textgraphs.Pipeline = tg.create_pipeline(
SRC_TEXT.strip(),
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: parse text")
## collect graph elements from the parse
start_time = time.time()
tg.collect_graph_elements(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: collect elements")
## perform entity linking
start_time = time.time()
tg.perform_entity_linking(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: entity linking")
## perform concurrent relation extraction
start_time = time.time()
if concur:
try:
loop = asyncio.get_running_loop()
except RuntimeError:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
inferred_edges: list = loop.run_until_complete(
tg.infer_relations_async(
pipe,
debug = debug,
)
)
else:
inferred_edges = tg.infer_relations(
pipe,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: relation extraction")
n_list: list = list(tg.nodes.values())
df_rel: pd.DataFrame = pd.DataFrame.from_dict([
{
"src": n_list[edge.src_node].text,
"dst": n_list[edge.dst_node].text,
"rel": pipe.kg.normalize_prefix(edge.rel),
"weight": edge.prob,
}
for edge in inferred_edges
])
ic(df_rel)
## construct the _lemma graph_
start_time = time.time()
tg.construct_lemma_graph(
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: construct graph")
## rank the extracted phrases
start_time = time.time()
tg.calc_phrase_ranks(
pr_alpha = textgraphs.PAGERANK_ALPHA,
debug = debug,
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: rank phrases")
## show the extracted phrase results
ic(tg.get_phrases_as_df())
if debug: # pylint: disable=W0101
for key, node in tg.nodes.items():
print(key, node)
for key, edge in tg.edges.items():
print(key, edge)
except Exception as ex: # pylint: disable=W0718
ic(ex)
traceback.print_exc()
## transform graph data to a _graph of relations_
start_time = time.time()
gor: textgraphs.GraphOfRelations = textgraphs.GraphOfRelations(
tg,
)
gor.seeds(
debug = False, # True
)
gor.construct_gor(
debug = False, # True
)
_scores: typing.Dict[ tuple, float ] = gor.get_affinity_scores(
debug = False, # True
)
duration = round(time.time() - start_time, 3)
print(f"{duration:7.3f} sec: graph of relations")
gor.render_gor_plt(_scores)
plt.show()
#sys.exit(0)
######################################################################
## stack profiler report
if profile:
profiler.stop()
profiler.print()
## output lemma graph as JSON
with open("lemma.json", "w", encoding = "utf-8") as fp:
fp.write(tg.dump_lemma_graph())
|