File size: 7,110 Bytes
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ff3b5
 
 
 
 
 
 
63bfd18
 
 
38ff3b5
 
 
63bfd18
 
 
 
38ff3b5
 
 
 
 
 
 
 
 
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ff3b5
 
 
 
 
 
 
 
 
 
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ff3b5
 
 
 
 
 
 
63bfd18
 
 
38ff3b5
 
 
63bfd18
 
 
 
38ff3b5
 
 
 
 
 
 
 
 
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ff3b5
 
 
 
 
 
 
 
 
 
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38ff3b5
 
 
63bfd18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
import asyncio
from typing import Any

import weave
from guardrails import Guard
from guardrails.hub import SecretsPresent
from llm_guard.input_scanners import Secrets
from llm_guard.util import configure_logger

from guardrails_genie.guardrails import GuardrailManager
from guardrails_genie.guardrails.base import Guardrail
from guardrails_genie.guardrails.secrets_detection import (
    SecretsDetectionResponse,
    SecretsDetectionSimpleResponse,
    SecretsDetectionGuardrail,
)
from guardrails_genie.metrics import AccuracyMetric

logger = configure_logger(log_level="ERROR")


class GuardrailsAISecretsDetector(Guardrail):
    """
    A class to detect secrets using Guardrails AI.

    Attributes:
        validator (Any): The validator used for detecting secrets.
    """

    validator: Any

    def __init__(self):
        """
        Initializes the GuardrailsAISecretsDetector with a validator.
        """
        validator = Guard().use(SecretsPresent, on_fail="fix")
        super().__init__(validator=validator)

    def scan(self, text: str) -> dict:
        """
        Scans the given text for secrets.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict: A dictionary containing the scan results.
        """
        response = self.validator.validate(text)
        if response.validation_summaries:
            summary = response.validation_summaries[0]
            return {
                "has_secret": True,
                "detected_secrets": {
                    str(k): v
                    for k, v in enumerate(
                        summary.failure_reason.splitlines()[1:], start=1
                    )
                },
                "explanation": summary.failure_reason,
                "modified_prompt": response.validated_output,
                "risk_score": 1.0,
            }
        else:
            return {
                "has_secret": False,
                "detected_secrets": None,
                "explanation": "No secrets detected in the text.",
                "modified_prompt": response.validated_output,
                "risk_score": 0.0,
            }

    @weave.op
    def guard(
        self,
        prompt: str,
        return_detected_secrets: bool = True,
        **kwargs,
    ) -> SecretsDetectionResponse | SecretsDetectionResponse:
        """
        Guards the given prompt by scanning for secrets.

        Args:
            prompt (str): The prompt to scan for secrets.
            return_detected_secrets (bool): Whether to return detected secrets.

        Returns:
            SecretsDetectionResponse | SecretsDetectionSimpleResponse: The response after scanning for secrets.
        """
        results = self.scan(prompt)

        if return_detected_secrets:
            return SecretsDetectionResponse(
                contains_secrets=results["has_secret"],
                detected_secrets=results["detected_secrets"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )
        else:
            return SecretsDetectionSimpleResponse(
                contains_secrets=not results["has_secret"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )


class LLMGuardSecretsDetector(Guardrail):
    """
    A class to detect secrets using LLM Guard.

    Attributes:
        validator (Any): The validator used for detecting secrets.
    """

    validator: Any

    def __init__(self):
        """
        Initializes the LLMGuardSecretsDetector with a validator.
        """
        validator = Secrets(redact_mode="all")
        super().__init__(validator=validator)

    def scan(self, text: str) -> dict:
        """
        Scans the given text for secrets.

        Args:
            text (str): The text to scan for secrets.

        Returns:
            dict: A dictionary containing the scan results.
        """
        sanitized_prompt, is_valid, risk_score = self.validator.scan(text)
        if is_valid:
            return {
                "has_secret": not is_valid,
                "detected_secrets": None,
                "explanation": "No secrets detected in the text.",
                "modified_prompt": sanitized_prompt,
                "risk_score": risk_score,
            }
        else:
            return {
                "has_secret": not is_valid,
                "detected_secrets": {},
                "explanation": "This library does not return detected secrets.",
                "modified_prompt": sanitized_prompt,
                "risk_score": risk_score,
            }

    @weave.op
    def guard(
        self,
        prompt: str,
        return_detected_secrets: bool = True,
        **kwargs,
    ) -> SecretsDetectionResponse | SecretsDetectionResponse:
        """
        Guards the given prompt by scanning for secrets.

        Args:
            prompt (str): The prompt to scan for secrets.
            return_detected_secrets (bool): Whether to return detected secrets.

        Returns:
            SecretsDetectionResponse | SecretsDetectionSimpleResponse: The response after scanning for secrets.
        """
        results = self.scan(prompt)
        if return_detected_secrets:
            return SecretsDetectionResponse(
                contains_secrets=results["has_secret"],
                detected_secrets=results["detected_secrets"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )
        else:
            return SecretsDetectionSimpleResponse(
                contains_secrets=not results["has_secret"],
                explanation=results["explanation"],
                redacted_text=results["modified_prompt"],
                risk_score=results["risk_score"],
            )


def main():
    """
    Main function to initialize and evaluate the secrets detectors.
    """
    client = weave.init("parambharat/secrets-detection")
    dataset = weave.ref("secrets-detection-benchmark:latest").get()
    llm_guard_guardrail = LLMGuardSecretsDetector()
    guardrails_ai_guardrail = GuardrailsAISecretsDetector()
    guardrails_genie_guardrail = SecretsDetectionGuardrail()

    all_guards = [
        llm_guard_guardrail,
        guardrails_ai_guardrail,
        guardrails_genie_guardrail,
    ]
    evaluation = weave.Evaluation(
        dataset=dataset.rows,
        scorers=[AccuracyMetric()],
    )

    for guard in all_guards:
        name = guard.__class__.__name__
        guardrail_manager = GuardrailManager(
            guardrails=[
                guard,
            ]
        )

        results = asyncio.run(
            evaluation.evaluate(
                guardrail_manager,
                __weave={"display_name": f"{name}"},
            )
        )
        print(results)


if __name__ == "__main__":
    main()