Update app.py
Browse files
app.py
CHANGED
@@ -1,34 +1,15 @@
|
|
1 |
import gradio as gr
|
2 |
-
import spaces
|
3 |
import torch
|
4 |
-
from
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
import psutil
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
"""
|
13 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
14 |
-
"""
|
15 |
-
|
16 |
-
from accelerate import init_empty_weights, infer_auto_device_map, load_checkpoint_and_dispatch
|
17 |
-
from accelerate import Accelerator
|
18 |
-
|
19 |
-
|
20 |
-
subprocess.run(
|
21 |
-
"pip install psutil",
|
22 |
-
|
23 |
-
shell=True,
|
24 |
)
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
from datetime import datetime
|
31 |
-
|
32 |
|
33 |
subprocess.run(
|
34 |
"pip install flash-attn --no-build-isolation",
|
@@ -36,191 +17,90 @@ subprocess.run(
|
|
36 |
shell=True,
|
37 |
)
|
38 |
|
39 |
-
|
40 |
-
# pip install 'git+https://github.com/huggingface/transformers.git'
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
token=os.getenv('token')
|
45 |
-
print('token = ',token)
|
46 |
-
|
47 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
48 |
-
import transformers
|
49 |
-
|
50 |
-
# model_id = "mistralai/Mistral-7B-v0.3"
|
51 |
-
|
52 |
-
model_id = "microsoft/Phi-3-medium-4k-instruct"
|
53 |
-
# model_id = "microsoft/phi-4"
|
54 |
-
|
55 |
-
# model_id = "Qwen/Qwen2-7B-Instruct"
|
56 |
-
|
57 |
-
|
58 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
59 |
-
# model_id
|
60 |
-
model_id,
|
61 |
-
# use_fast=False
|
62 |
-
token= token,
|
63 |
-
trust_remote_code=True)
|
64 |
-
|
65 |
-
|
66 |
-
accelerator = Accelerator()
|
67 |
-
|
68 |
-
model = AutoModelForCausalLM.from_pretrained(model_id, token= token,
|
69 |
-
# torch_dtype= torch.uint8,
|
70 |
-
torch_dtype=torch.bfloat16,
|
71 |
-
# load_in_8bit=True,
|
72 |
-
# # # torch_dtype=torch.fl,
|
73 |
-
attn_implementation="flash_attention_2",
|
74 |
-
low_cpu_mem_usage=True,
|
75 |
-
trust_remote_code=True,
|
76 |
-
device_map='cuda',
|
77 |
-
# device_map=accelerator.device_map,
|
78 |
-
|
79 |
-
)
|
80 |
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
88 |
-
|
89 |
-
pipe = pipeline(
|
90 |
-
"text-generation",
|
91 |
-
model=model,
|
92 |
-
tokenizer=tokenizer,
|
93 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
|
96 |
-
|
97 |
-
|
98 |
-
# pipeline = transformers.pipeline(
|
99 |
-
# "text-generation",
|
100 |
-
# model="microsoft/phi-4",
|
101 |
-
# model_kwargs={"torch_dtype": "auto"},
|
102 |
-
# device_map="auto",
|
103 |
-
# )
|
104 |
-
|
105 |
-
|
106 |
-
# device_map = infer_auto_device_map(model, max_memory={0: "79GB", "cpu":"65GB" })
|
107 |
-
|
108 |
-
# Load the model with the inferred device map
|
109 |
-
# model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, no_split_module_classes=["GPTJBlock"])
|
110 |
-
# model.half()
|
111 |
-
|
112 |
-
import json
|
113 |
-
|
114 |
-
def str_to_json(str_obj):
|
115 |
-
json_obj = json.loads(str_obj)
|
116 |
-
return json_obj
|
117 |
-
|
118 |
-
|
119 |
-
@spaces.GPU(duration=170)
|
120 |
-
def respond(
|
121 |
-
message,
|
122 |
-
history: list[tuple[str, str]],
|
123 |
-
system_message,
|
124 |
-
max_tokens,
|
125 |
-
temperature,
|
126 |
-
top_p,
|
127 |
-
):
|
128 |
-
# yield 'retuend'
|
129 |
-
# model.to(accelerator.device)
|
130 |
-
|
131 |
-
messages = []
|
132 |
-
json_obj = str_to_json(message)
|
133 |
-
print(json_obj)
|
134 |
-
|
135 |
-
messages= json_obj
|
136 |
-
|
137 |
-
# input_ids = tokenizer.apply_chat_template(messages, tokenize=True, add_generation_prompt=True, return_tensors="pt").to(accelerator.device)
|
138 |
-
# input_ids2 = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True, return_tensors="pt") #.to('cuda')
|
139 |
-
# print(f"Converted input_ids dtype: {input_ids.dtype}")
|
140 |
-
# input_str= str(input_ids2)
|
141 |
-
# print('input str = ', input_str)
|
142 |
-
|
143 |
-
generation_args = {
|
144 |
-
"max_new_tokens": max_tokens,
|
145 |
-
"return_full_text": False,
|
146 |
-
"temperature": temperature,
|
147 |
-
"do_sample": False,
|
148 |
-
}
|
149 |
-
|
150 |
-
output = pipe(messages, **generation_args)
|
151 |
-
print(output[0]['generated_text'])
|
152 |
-
gen_text=output[0]['generated_text']
|
153 |
-
|
154 |
-
# with torch.no_grad():
|
155 |
-
# gen_tokens = model.generate(
|
156 |
-
# input_ids,
|
157 |
-
# max_new_tokens=max_tokens,
|
158 |
-
# # do_sample=True,
|
159 |
-
# temperature=temperature,
|
160 |
-
# )
|
161 |
-
|
162 |
-
# gen_text = tokenizer.decode(gen_tokens[0])
|
163 |
-
# print(gen_text)
|
164 |
-
# gen_text= gen_text.replace(input_str,'')
|
165 |
-
# gen_text= gen_text.replace('<|im_end|>','')
|
166 |
-
|
167 |
-
yield gen_text
|
168 |
-
|
169 |
-
|
170 |
-
# messages = [
|
171 |
-
# # {"role": "user", "content": "What is your favourite condiment?"},
|
172 |
-
# # {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
|
173 |
-
# # {"role": "user", "content": "Do you have mayonnaise recipes?"}
|
174 |
-
# ]
|
175 |
-
|
176 |
-
# inputs = tokenizer.apply_chat_template(messages, return_tensors="pt").to("cuda")
|
177 |
-
|
178 |
-
# outputs = model.generate(inputs, max_new_tokens=2000)
|
179 |
-
# gen_text=tokenizer.decode(outputs[0], skip_special_tokens=True)
|
180 |
-
|
181 |
-
# print(gen_text)
|
182 |
-
# yield gen_text
|
183 |
-
# for val in history:
|
184 |
-
# if val[0]:
|
185 |
-
# messages.append({"role": "user", "content": val[0]})
|
186 |
-
# if val[1]:
|
187 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
188 |
-
|
189 |
-
# messages.append({"role": "user", "content": message})
|
190 |
-
|
191 |
-
# response = ""
|
192 |
-
|
193 |
-
# for message in client.chat_completion(
|
194 |
-
# messages,
|
195 |
-
# max_tokens=max_tokens,
|
196 |
-
# stream=True,
|
197 |
-
# temperature=temperature,
|
198 |
-
# top_p=top_p,
|
199 |
-
# ):
|
200 |
-
# token = message.choices[0].delta.content
|
201 |
-
|
202 |
-
# response += token
|
203 |
-
# yield response
|
204 |
-
|
205 |
-
"""
|
206 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
207 |
-
"""
|
208 |
demo = gr.ChatInterface(
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
210 |
additional_inputs=[
|
211 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
212 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
213 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
214 |
gr.Slider(
|
215 |
-
minimum=0.1,
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
220 |
),
|
221 |
],
|
|
|
|
|
|
|
222 |
)
|
223 |
-
|
224 |
-
|
225 |
-
if __name__ == "__main__":
|
226 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import torch
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForCausalLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
TextIteratorStreamer,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
)
|
8 |
+
import os
|
9 |
+
from threading import Thread
|
10 |
+
import spaces
|
11 |
+
import time
|
12 |
+
import subprocess
|
|
|
|
|
13 |
|
14 |
subprocess.run(
|
15 |
"pip install flash-attn --no-build-isolation",
|
|
|
17 |
shell=True,
|
18 |
)
|
19 |
|
20 |
+
token = os.environ["HF_TOKEN"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(
|
24 |
+
"microsoft/phi-4",
|
25 |
+
token=token,
|
26 |
+
trust_remote_code=True,
|
27 |
+
torch_dtype=torch.bfloat16
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
+
tok = AutoTokenizer.from_pretrained("microsoft/phi-4", token=token)
|
30 |
+
terminators = [
|
31 |
+
tok.eos_token_id,
|
32 |
+
]
|
33 |
+
|
34 |
+
if torch.cuda.is_available():
|
35 |
+
device = torch.device("cuda")
|
36 |
+
print(f"Using GPU: {torch.cuda.get_device_name(device)}")
|
37 |
+
else:
|
38 |
+
device = torch.device("cpu")
|
39 |
+
print("Using CPU")
|
40 |
+
|
41 |
+
model = model.to(device)
|
42 |
+
# Dispatch Errors
|
43 |
+
|
44 |
+
|
45 |
+
@spaces.GPU(duration=60)
|
46 |
+
def chat(message, history, temperature, do_sample, max_tokens):
|
47 |
+
chat = []
|
48 |
+
for item in history:
|
49 |
+
chat.append({"role": "user", "content": item[0]})
|
50 |
+
if item[1] is not None:
|
51 |
+
chat.append({"role": "assistant", "content": item[1]})
|
52 |
+
chat.append({"role": "user", "content": message})
|
53 |
+
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
54 |
+
model_inputs = tok([messages], return_tensors="pt").to(device)
|
55 |
+
streamer = TextIteratorStreamer(
|
56 |
+
tok, timeout=20.0, skip_prompt=True, skip_special_tokens=True
|
57 |
+
)
|
58 |
+
generate_kwargs = dict(
|
59 |
+
model_inputs,
|
60 |
+
streamer=streamer,
|
61 |
+
max_new_tokens=max_tokens,
|
62 |
+
do_sample=True,
|
63 |
+
temperature=temperature,
|
64 |
+
eos_token_id=terminators,
|
65 |
+
)
|
66 |
+
|
67 |
+
if temperature == 0:
|
68 |
+
generate_kwargs["do_sample"] = False
|
69 |
+
|
70 |
+
t = Thread(target=model.generate, kwargs=generate_kwargs)
|
71 |
+
t.start()
|
72 |
+
|
73 |
+
partial_text = ""
|
74 |
+
for new_text in streamer:
|
75 |
+
partial_text += new_text
|
76 |
+
yield partial_text
|
77 |
+
|
78 |
+
yield partial_text
|
79 |
|
80 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
demo = gr.ChatInterface(
|
82 |
+
fn=chat,
|
83 |
+
examples=[["Write me a poem about Machine Learning."]],
|
84 |
+
# multimodal=False,
|
85 |
+
additional_inputs_accordion=gr.Accordion(
|
86 |
+
label="⚙️ Parameters", open=False, render=False
|
87 |
+
),
|
88 |
additional_inputs=[
|
|
|
|
|
|
|
89 |
gr.Slider(
|
90 |
+
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False
|
91 |
+
),
|
92 |
+
gr.Checkbox(label="Sampling", value=True),
|
93 |
+
gr.Slider(
|
94 |
+
minimum=128,
|
95 |
+
maximum=4096,
|
96 |
+
step=1,
|
97 |
+
value=512,
|
98 |
+
label="Max new tokens",
|
99 |
+
render=False,
|
100 |
),
|
101 |
],
|
102 |
+
stop_btn="Stop Generation",
|
103 |
+
title="Chat With LLMs",
|
104 |
+
description="Now Running [microsoft/phi-4](https://huggingface.co/microsoft/phi-4)",
|
105 |
)
|
106 |
+
demo.launch()
|
|
|
|
|
|