import sys import os import OpenGL.GL as gl os.environ["PYOPENGL_PLATFORM"] = "egl" sys.argv = ['VQ-Trans/GPT_eval_multi.py'] os.umask(0) os.makedirs('output', exist_ok=True) os.chdir('VQ-Trans') os.umask(0) # os.system('gdown --fuzzy https://drive.google.com/file/d/1chKRmW2vNX5Lz6dPO45WY1qVNUkoJJ5D/view') # os.system('gdown --fuzzy https://drive.google.com/file/d/1cgUVeGwPU7PzTDx20CAijt18fNhtnOPq/view') # os.system('gdown --fuzzy https://drive.google.com/file/d/1o7RTDQcToJjTm9_mNWTyzvZvjTWpZfug/view -O checkpoints/') # os.system('gdown --fuzzy https://drive.google.com/file/d/1tX79xk0fflp07EZ660Xz1RAFE33iEyJR/view -O checkpoints/') os.system('unzip checkpoints/t2m.zip') os.system('unzip checkpoints/kit.zip') sys.path.append('/home/user/app/VQ-Trans') import options.option_transformer as option_trans from huggingface_hub import snapshot_download model_path = snapshot_download(repo_id="vumichien/T2M-GPT") args = option_trans.get_args_parser() args.dataname = 't2m' args.resume_pth = f'{model_path}/VQVAE/net_last.pth' args.resume_trans = f'{model_path}/VQTransformer_corruption05/net_best_fid.pth' args.down_t = 2 args.depth = 3 args.block_size = 51 import clip import torch import numpy as np import models.vqvae as vqvae import models.t2m_trans as trans from utils.motion_process import recover_from_ric import visualization.plot_3d_global as plot_3d from models.rotation2xyz import Rotation2xyz import numpy as np from trimesh import Trimesh import gc import torch from visualize.simplify_loc2rot import joints2smpl import pyrender # import matplotlib.pyplot as plt import io import imageio from shapely import geometry import trimesh from pyrender.constants import RenderFlags import math # import ffmpeg # from PIL import Image import hashlib import gradio as gr ## load clip model and datasets is_cuda = torch.cuda.is_available() device = torch.device("cuda" if is_cuda else "cpu") print(device) clip_model, clip_preprocess = clip.load("ViT-B/32", device=device, jit=False, download_root='./') # Must set jit=False for training if is_cuda: clip.model.convert_weights(clip_model) clip_model.eval() for p in clip_model.parameters(): p.requires_grad = False net = vqvae.HumanVQVAE(args, ## use args to define different parameters in different quantizers args.nb_code, args.code_dim, args.output_emb_width, args.down_t, args.stride_t, args.width, args.depth, args.dilation_growth_rate) trans_encoder = trans.Text2Motion_Transformer(num_vq=args.nb_code, embed_dim=1024, clip_dim=args.clip_dim, block_size=args.block_size, num_layers=9, n_head=16, drop_out_rate=args.drop_out_rate, fc_rate=args.ff_rate) print('loading checkpoint from {}'.format(args.resume_pth)) ckpt = torch.load(args.resume_pth, map_location='cpu') net.load_state_dict(ckpt['net'], strict=True) net.eval() print('loading transformer checkpoint from {}'.format(args.resume_trans)) ckpt = torch.load(args.resume_trans, map_location='cpu') trans_encoder.load_state_dict(ckpt['trans'], strict=True) trans_encoder.eval() mean = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/mean.npy')) std = torch.from_numpy(np.load('./checkpoints/t2m/VQVAEV3_CB1024_CMT_H1024_NRES3/meta/std.npy')) if is_cuda: net.cuda() trans_encoder.cuda() mean = mean.cuda() std = std.cuda() def render(motions, device_id=0, name='test_vis'): frames, njoints, nfeats = motions.shape MINS = motions.min(axis=0).min(axis=0) MAXS = motions.max(axis=0).max(axis=0) height_offset = MINS[1] motions[:, :, 1] -= height_offset trajec = motions[:, 0, [0, 2]] is_cuda = torch.cuda.is_available() # device = torch.device("cuda" if is_cuda else "cpu") j2s = joints2smpl(num_frames=frames, device_id=0, cuda=is_cuda) rot2xyz = Rotation2xyz(device=device) faces = rot2xyz.smpl_model.faces if not os.path.exists(f'output/{name}_pred.pt'): print(f'Running SMPLify, it may take a few minutes.') motion_tensor, opt_dict = j2s.joint2smpl(motions) # [nframes, njoints, 3] vertices = rot2xyz(torch.tensor(motion_tensor).clone(), mask=None, pose_rep='rot6d', translation=True, glob=True, jointstype='vertices', vertstrans=True) vertices = vertices.detach().cpu() torch.save(vertices, f'output/{name}_pred.pt') else: vertices = torch.load(f'output/{name}_pred.pt') frames = vertices.shape[3] # shape: 1, nb_frames, 3, nb_joints print(vertices.shape) MINS = torch.min(torch.min(vertices[0], axis=0)[0], axis=1)[0] MAXS = torch.max(torch.max(vertices[0], axis=0)[0], axis=1)[0] out_list = [] minx = MINS[0] - 0.5 maxx = MAXS[0] + 0.5 minz = MINS[2] - 0.5 maxz = MAXS[2] + 0.5 polygon = geometry.Polygon([[minx, minz], [minx, maxz], [maxx, maxz], [maxx, minz]]) polygon_mesh = trimesh.creation.extrude_polygon(polygon, 1e-5) vid = [] for i in range(frames): if i % 10 == 0: print(i) mesh = Trimesh(vertices=vertices[0, :, :, i].squeeze().tolist(), faces=faces) base_color = (0.11, 0.53, 0.8, 0.5) ## OPAQUE rendering without alpha ## BLEND rendering consider alpha material = pyrender.MetallicRoughnessMaterial( metallicFactor=0.7, alphaMode='OPAQUE', baseColorFactor=base_color ) mesh = pyrender.Mesh.from_trimesh(mesh, material=material) polygon_mesh.visual.face_colors = [0, 0, 0, 0.21] polygon_render = pyrender.Mesh.from_trimesh(polygon_mesh, smooth=False) bg_color = [1, 1, 1, 0.8] scene = pyrender.Scene(bg_color=bg_color, ambient_light=(0.4, 0.4, 0.4)) sx, sy, tx, ty = [0.75, 0.75, 0, 0.10] camera = pyrender.PerspectiveCamera(yfov=(np.pi / 3.0)) light = pyrender.DirectionalLight(color=[1,1,1], intensity=300) scene.add(mesh) c = np.pi / 2 scene.add(polygon_render, pose=np.array([[ 1, 0, 0, 0], [ 0, np.cos(c), -np.sin(c), MINS[1].cpu().numpy()], [ 0, np.sin(c), np.cos(c), 0], [ 0, 0, 0, 1]])) light_pose = np.eye(4) light_pose[:3, 3] = [0, -1, 1] scene.add(light, pose=light_pose.copy()) light_pose[:3, 3] = [0, 1, 1] scene.add(light, pose=light_pose.copy()) light_pose[:3, 3] = [1, 1, 2] scene.add(light, pose=light_pose.copy()) c = -np.pi / 6 scene.add(camera, pose=[[ 1, 0, 0, (minx+maxx).cpu().numpy()/2], [ 0, np.cos(c), -np.sin(c), 1.5], [ 0, np.sin(c), np.cos(c), max(4, minz.cpu().numpy()+(1.5-MINS[1].cpu().numpy())*2, (maxx-minx).cpu().numpy())], [ 0, 0, 0, 1] ]) # render scene r = pyrender.OffscreenRenderer(960, 960) color, _ = r.render(scene, flags=RenderFlags.RGBA) # Image.fromarray(color).save(outdir+'/'+name+'_'+str(i)+'.png') vid.append(color) r.delete() out = np.stack(vid, axis=0) imageio.mimwrite(f'output/results.gif', out, fps=20) del out, vertices return f'output/results.gif' def predict(clip_text, method='fast'): gc.collect() if torch.cuda.is_available(): text = clip.tokenize([clip_text], truncate=True).cuda() else: text = clip.tokenize([clip_text], truncate=True) feat_clip_text = clip_model.encode_text(text).float() index_motion = trans_encoder.sample(feat_clip_text[0:1], False) pred_pose = net.forward_decoder(index_motion) pred_xyz = recover_from_ric((pred_pose*std+mean).float(), 22) output_name = hashlib.md5(clip_text.encode()).hexdigest() if method == 'fast': xyz = pred_xyz.reshape(1, -1, 22, 3) pose_vis = plot_3d.draw_to_batch(xyz.detach().cpu().numpy(), title_batch=None, outname=[f'output/results.gif']) return f'output/results.gif' elif method == 'slow': output_path = render(pred_xyz.detach().cpu().numpy().squeeze(axis=0), device_id=0, name=output_name) return output_path # ---- Gradio Layout ----- text_prompt = gr.Textbox(label="Text prompt", lines=1, interactive=True) video_out = gr.Video(label="Motion", mirror_webcam=False, interactive=False) demo = gr.Blocks() demo.encrypt = False with demo: gr.Markdown('''