Spaces:
Sleeping
Sleeping
prasanna kumar
commited on
Commit
Β·
0d3569b
1
Parent(s):
6e43644
added openai and cohere models support along with token visuvalizations
Browse files- app.py +88 -24
- requirements.txt +4 -0
app.py
CHANGED
@@ -4,11 +4,24 @@ import ast
|
|
4 |
from collections import Counter
|
5 |
import re
|
6 |
import plotly.graph_objs as go
|
|
|
|
|
|
|
|
|
7 |
|
8 |
model_path = "models/"
|
9 |
|
10 |
# Available models
|
11 |
-
MODELS = ["Meta-Llama-3.1-8B", "gemma-2b"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
def create_vertical_histogram(data, title):
|
14 |
labels, values = zip(*data) if data else ([], [])
|
@@ -25,32 +38,80 @@ def create_vertical_histogram(data, title):
|
|
25 |
)
|
26 |
return fig
|
27 |
|
28 |
-
def process_text(text:str,model_name):
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
-
def process_ids(ids:str,model_name):
|
35 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
36 |
token_ids = ast.literal_eval(ids)
|
37 |
-
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
def
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
if input_type == "Text":
|
44 |
-
text,tokens,token_ids = process_text(text=input_value,model_name=model_name)
|
45 |
elif input_type == "Token IDs":
|
46 |
-
text,tokens,token_ids = process_ids(ids=input_value,model_name=model_name)
|
47 |
|
48 |
character_count = len(text)
|
49 |
word_count = len(text.split())
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
special_char_count = sum(1 for token in tokens if not token.isalnum() and token != 'β')
|
54 |
|
55 |
words = re.findall(r'\b\w+\b', text.lower())
|
56 |
special_chars = re.findall(r'[^\w\s]', text)
|
@@ -71,7 +132,9 @@ def process_input(input_type, input_value, model_name):
|
|
71 |
analysis += f"Special character tokens: {special_char_count}\n"
|
72 |
analysis += f"Other tokens: {len(tokens) - space_count - special_char_count}"
|
73 |
|
74 |
-
|
|
|
|
|
75 |
|
76 |
def text_example():
|
77 |
return "Hello, world! This is an example text input for tokenization."
|
@@ -85,8 +148,9 @@ with gr.Blocks() as iface:
|
|
85 |
|
86 |
with gr.Row():
|
87 |
input_type = gr.Radio(["Text", "Token IDs"], label="Input Type", value="Text")
|
88 |
-
model_name = gr.Dropdown(choices=MODELS, label="Select Model",value=MODELS[0])
|
89 |
|
|
|
90 |
input_text = gr.Textbox(lines=5, label="Input")
|
91 |
|
92 |
with gr.Row():
|
@@ -96,8 +160,8 @@ with gr.Blocks() as iface:
|
|
96 |
submit_button = gr.Button("Process")
|
97 |
|
98 |
analysis_output = gr.Textbox(label="Analysis", lines=6)
|
99 |
-
text_output = gr.Textbox(label="Text",lines=6)
|
100 |
-
tokens_output = gr.
|
101 |
token_ids_output = gr.Textbox(label="Token IDs", lines=2)
|
102 |
|
103 |
with gr.Row():
|
@@ -117,8 +181,8 @@ with gr.Blocks() as iface:
|
|
117 |
|
118 |
submit_button.click(
|
119 |
process_input,
|
120 |
-
inputs=[input_type, input_text, model_name],
|
121 |
-
outputs=[analysis_output,text_output
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
|
|
4 |
from collections import Counter
|
5 |
import re
|
6 |
import plotly.graph_objs as go
|
7 |
+
import html
|
8 |
+
import random
|
9 |
+
import tiktoken
|
10 |
+
import anthropic
|
11 |
|
12 |
model_path = "models/"
|
13 |
|
14 |
# Available models
|
15 |
+
MODELS = ["Meta-Llama-3.1-8B", "gemma-2b", "gpt-3.5-turbo","gpt-4","gpt-4o" "Claude-3-Sonnet"]
|
16 |
+
openai_models = ["gpt-3.5-turbo","gpt-4","gpt-4o"]
|
17 |
+
# Color palette visible on both light and dark themes
|
18 |
+
COLOR_PALETTE = [
|
19 |
+
"#e6194B", "#3cb44b", "#ffe119", "#4363d8",
|
20 |
+
"#f58231", "#911eb4", "#42d4f4", "#f032e6",
|
21 |
+
"#bfef45", "#fabed4", "#469990", "#dcbeff",
|
22 |
+
"#9A6324", "#fffac8", "#800000", "#aaffc3",
|
23 |
+
"#808000", "#ffd8b1", "#000075", "#a9a9a9"
|
24 |
+
]
|
25 |
|
26 |
def create_vertical_histogram(data, title):
|
27 |
labels, values = zip(*data) if data else ([], [])
|
|
|
38 |
)
|
39 |
return fig
|
40 |
|
41 |
+
def process_text(text: str, model_name: str, api_key: str = None):
|
42 |
+
if model_name in ["Meta-Llama-3.1-8B", "gemma-2b"]:
|
43 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
44 |
+
token_ids = tokenizer.encode(text, add_special_tokens=True)
|
45 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
46 |
+
elif model_name in openai_models:
|
47 |
+
encoding = tiktoken.encoding_for_model(model_name=model_name)
|
48 |
+
token_ids = encoding.encode(text)
|
49 |
+
tokens = [encoding.decode([id]) for id in token_ids]
|
50 |
+
elif model_name == "Claude-3-Sonnet":
|
51 |
+
if not api_key:
|
52 |
+
raise ValueError("API key is required for Claude models")
|
53 |
+
client = anthropic.Anthropic(api_key=api_key)
|
54 |
+
tokenizer = client.get_tokenizer()
|
55 |
+
token_ids = tokenizer.encode(text).ids
|
56 |
+
tokens = [tokenizer.decode([id]) for id in token_ids]
|
57 |
+
else:
|
58 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
59 |
+
|
60 |
+
return text, tokens, token_ids
|
61 |
|
62 |
+
def process_ids(ids: str, model_name: str, api_key: str = None):
|
|
|
63 |
token_ids = ast.literal_eval(ids)
|
64 |
+
if model_name in ["Meta-Llama-3.1-8B", "gemma-2b"]:
|
65 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path + model_name)
|
66 |
+
text = tokenizer.decode(token_ids)
|
67 |
+
tokens = tokenizer.convert_ids_to_tokens(token_ids)
|
68 |
+
elif model_name == openai_models:
|
69 |
+
encoding = tiktoken.encoding_for_model(model_name=model_name)
|
70 |
+
text = encoding.decode(token_ids)
|
71 |
+
tokens = [encoding.decode([id]) for id in token_ids]
|
72 |
+
elif model_name == "Claude-3-Sonnet":
|
73 |
+
client = anthropic.Anthropic(api_key=api_key)
|
74 |
+
tokenizer = client.get_tokenizer()
|
75 |
+
text = tokenizer.decode(token_ids)
|
76 |
+
tokens = [tokenizer.decode([id]) for id in token_ids]
|
77 |
+
else:
|
78 |
+
raise ValueError(f"Unsupported model: {model_name}")
|
79 |
+
|
80 |
+
return text, tokens, token_ids
|
81 |
|
82 |
+
def get_token_color(token, token_colors):
|
83 |
+
if token.startswith('<') and token.endswith('>'):
|
84 |
+
return "#42d4f4" # Cyan for special tokens
|
85 |
+
elif token == 'β' or token == ' ':
|
86 |
+
return "#3cb44b" # Green for space tokens
|
87 |
+
elif not token.isalnum():
|
88 |
+
return "#f032e6" # Magenta for special characters
|
89 |
+
else:
|
90 |
+
if token not in token_colors:
|
91 |
+
token_colors[token] = random.choice(COLOR_PALETTE)
|
92 |
+
return token_colors[token]
|
93 |
+
|
94 |
+
def create_html_tokens(tokens):
|
95 |
+
html_output = '<div style="font-family: monospace; border: 1px solid #ccc; padding: 10px; border-radius: 5px; background-color: #f9f9f9; white-space: pre-wrap; word-break: break-all;">'
|
96 |
+
token_colors = {}
|
97 |
+
for token in tokens:
|
98 |
+
color = get_token_color(token, token_colors)
|
99 |
+
escaped_token = html.escape(token)
|
100 |
+
html_output += f'<span style="background-color: {color}; color: black; padding: 2px 4px; margin: 1px; border-radius: 3px; display: inline-block;">{escaped_token}</span>'
|
101 |
+
html_output += '</div>'
|
102 |
+
return html_output
|
103 |
+
|
104 |
+
def process_input(input_type, input_value, model_name, api_key):
|
105 |
if input_type == "Text":
|
106 |
+
text, tokens, token_ids = process_text(text=input_value, model_name=model_name, api_key=api_key)
|
107 |
elif input_type == "Token IDs":
|
108 |
+
text, tokens, token_ids = process_ids(ids=input_value, model_name=model_name, api_key=api_key)
|
109 |
|
110 |
character_count = len(text)
|
111 |
word_count = len(text.split())
|
112 |
|
113 |
+
space_count = sum(1 for token in tokens if token in ['β', ' '])
|
114 |
+
special_char_count = sum(1 for token in tokens if not token.isalnum() and token not in ['β', ' '])
|
|
|
115 |
|
116 |
words = re.findall(r'\b\w+\b', text.lower())
|
117 |
special_chars = re.findall(r'[^\w\s]', text)
|
|
|
132 |
analysis += f"Special character tokens: {special_char_count}\n"
|
133 |
analysis += f"Other tokens: {len(tokens) - space_count - special_char_count}"
|
134 |
|
135 |
+
html_tokens = create_html_tokens(tokens)
|
136 |
+
|
137 |
+
return analysis, text, html_tokens, str(token_ids), words_hist, special_chars_hist, numbers_hist
|
138 |
|
139 |
def text_example():
|
140 |
return "Hello, world! This is an example text input for tokenization."
|
|
|
148 |
|
149 |
with gr.Row():
|
150 |
input_type = gr.Radio(["Text", "Token IDs"], label="Input Type", value="Text")
|
151 |
+
model_name = gr.Dropdown(choices=MODELS, label="Select Model", value=MODELS[0])
|
152 |
|
153 |
+
api_key = gr.Textbox(label="API Key Claude models)", type="password")
|
154 |
input_text = gr.Textbox(lines=5, label="Input")
|
155 |
|
156 |
with gr.Row():
|
|
|
160 |
submit_button = gr.Button("Process")
|
161 |
|
162 |
analysis_output = gr.Textbox(label="Analysis", lines=6)
|
163 |
+
text_output = gr.Textbox(label="Text", lines=6)
|
164 |
+
tokens_output = gr.HTML(label="Tokens")
|
165 |
token_ids_output = gr.Textbox(label="Token IDs", lines=2)
|
166 |
|
167 |
with gr.Row():
|
|
|
181 |
|
182 |
submit_button.click(
|
183 |
process_input,
|
184 |
+
inputs=[input_type, input_text, model_name, api_key],
|
185 |
+
outputs=[analysis_output, text_output, tokens_output, token_ids_output, words_plot, special_chars_plot, numbers_plot]
|
186 |
)
|
187 |
|
188 |
if __name__ == "__main__":
|
requirements.txt
CHANGED
@@ -1,11 +1,13 @@
|
|
1 |
aiofiles==23.2.1
|
2 |
annotated-types==0.7.0
|
|
|
3 |
anyio==4.4.0
|
4 |
certifi==2024.7.4
|
5 |
charset-normalizer==3.3.2
|
6 |
click==8.1.7
|
7 |
contourpy==1.2.1
|
8 |
cycler==0.12.1
|
|
|
9 |
fastapi==0.112.2
|
10 |
ffmpy==0.4.0
|
11 |
filelock==3.15.4
|
@@ -20,6 +22,7 @@ huggingface-hub==0.24.6
|
|
20 |
idna==3.8
|
21 |
importlib_resources==6.4.4
|
22 |
Jinja2==3.1.4
|
|
|
23 |
kiwisolver==1.4.5
|
24 |
markdown-it-py==3.0.0
|
25 |
MarkupSafe==2.1.5
|
@@ -51,6 +54,7 @@ six==1.16.0
|
|
51 |
sniffio==1.3.1
|
52 |
starlette==0.38.2
|
53 |
tenacity==9.0.0
|
|
|
54 |
tokenizers==0.19.1
|
55 |
tomlkit==0.12.0
|
56 |
tqdm==4.66.5
|
|
|
1 |
aiofiles==23.2.1
|
2 |
annotated-types==0.7.0
|
3 |
+
anthropic==0.34.1
|
4 |
anyio==4.4.0
|
5 |
certifi==2024.7.4
|
6 |
charset-normalizer==3.3.2
|
7 |
click==8.1.7
|
8 |
contourpy==1.2.1
|
9 |
cycler==0.12.1
|
10 |
+
distro==1.9.0
|
11 |
fastapi==0.112.2
|
12 |
ffmpy==0.4.0
|
13 |
filelock==3.15.4
|
|
|
22 |
idna==3.8
|
23 |
importlib_resources==6.4.4
|
24 |
Jinja2==3.1.4
|
25 |
+
jiter==0.5.0
|
26 |
kiwisolver==1.4.5
|
27 |
markdown-it-py==3.0.0
|
28 |
MarkupSafe==2.1.5
|
|
|
54 |
sniffio==1.3.1
|
55 |
starlette==0.38.2
|
56 |
tenacity==9.0.0
|
57 |
+
tiktoken==0.7.0
|
58 |
tokenizers==0.19.1
|
59 |
tomlkit==0.12.0
|
60 |
tqdm==4.66.5
|