Spaces:
Running
Running
import numpy as np | |
from PIL import ImageDraw, Image, ImageFont | |
from transformers import DPTFeatureExtractor, DPTForDepthEstimation | |
import torch | |
import streamlit as st | |
FONTS = [ | |
"Font: Serif - EBGaramond", | |
"Font: Serif - Cinzel", | |
"Font: Sans - Roboto", | |
"Font: Sans - Lato", | |
"Font: Display - Lobster", | |
"Font: Display - LilitaOne", | |
"Font: Handwriting - GreatVibes", | |
"Font: Handwriting - Pacifico", | |
"Font: Mono - Inconsolata", | |
"Font: Mono - Cutive", | |
] | |
def hex_to_rgb(hex): | |
rgb = [] | |
for i in (0, 2, 4): | |
decimal = int(hex[i : i + 2], 16) | |
rgb.append(decimal) | |
return tuple(rgb) | |
def load(): | |
feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") | |
model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") | |
return model, feature_extractor | |
model, feature_extractor = load() | |
def compute_depth(image): | |
inputs = feature_extractor(images=image, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
predicted_depth = outputs.predicted_depth | |
prediction = torch.nn.functional.interpolate( | |
predicted_depth.unsqueeze(1), | |
size=image.size[::-1], | |
mode="bicubic", | |
align_corners=False, | |
) | |
return prediction.cpu().numpy()[0, 0, :, :] | |
def get_mask1( | |
shape, x, y, caption, font=None, font_size=0.08, color=(0, 0, 0), alpha=0.8 | |
): | |
img_text = Image.new("RGBA", (shape[1], shape[0]), (0, 0, 0, 0)) | |
draw = ImageDraw.Draw(img_text) | |
font = ImageFont.truetype(font, int(font_size * shape[1])) | |
draw.text( | |
(x * shape[1], (1 - y) * shape[0]), | |
caption, | |
fill=(*color, int(max(min(1, alpha), 0) * 255)), | |
font=font, | |
) | |
text = np.array(img_text) | |
mask1 = np.dot(np.expand_dims(text[:, :, -1] / 255, -1), np.ones((1, 3))) | |
return text[:, :, :-1], mask1 | |
def get_mask2(depth_map, depth): | |
return np.expand_dims( | |
(depth_map[:, :] < depth * np.min(depth_map) + (1 - depth) * np.max(depth_map)), | |
-1, | |
) | |
def add_caption( | |
img, | |
caption, | |
depth_map=None, | |
x=0.5, | |
y=0.5, | |
depth=0.5, | |
font_size=50, | |
color=(255, 255, 255), | |
font="", | |
alpha=1, | |
): | |
text, mask1 = get_mask1( | |
img.shape, | |
x, | |
y, | |
caption, | |
font=font, | |
font_size=font_size, | |
color=color, | |
alpha=alpha, | |
) | |
mask2 = get_mask2(depth_map, depth) | |
mask = mask1 * np.dot(mask2, np.ones((1, 3))) | |
return ((1 - mask) * img + mask * text).astype(np.uint8) | |
def load_img(uploaded_file): | |
if uploaded_file is None: | |
img = Image.open("pulp.jpg") | |
default = True | |
else: | |
img = Image.open(uploaded_file) | |
if img.size[0] > 800 or img.size[1] > 800: | |
if img.size[0] < img.size[1]: | |
new_size = (int(800 * img.size[0] / img.size[1]), 800) | |
else: | |
new_size = (800, int(800 * img.size[1] / img.size[0])) | |
img = img.resize(new_size) | |
default = False | |
return np.array(img), compute_depth(img), default | |
def main(): | |
st.markdown( | |
""" | |
<style> | |
label{ | |
height: 0px !important; | |
min-height: 0px !important; | |
margin-bottom: 0px !important; | |
} | |
</style> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.sidebar.markdown( | |
""" | |
# Depth-aware text addition | |
Add text ***inside*** an image! | |
Upload an image, enter some text and adjust the ***depth*** where you want the text to be displayed. You can also define its location and appearance (font, color, transparency and size). | |
Built with [PyTorch](https://pytorch.org/), Intel's [MiDaS model](https://pytorch.org/hub/intelisl_midas_v2/), [Streamlit](https://streamlit.io/), [pillow](https://python-pillow.org/) and inspired by the official [video](https://youtu.be/eTa1jHk1Lxc) of *Jenny of Oldstones* by Florence + the Machine | |
To go further: | |
- [blog post](https://vivien000.github.io/blog/journal/adding-text-inside-pictures-and-videos.html) | |
- [notebook](https://colab.research.google.com/github/vivien000/depth-aware_captioning/blob/master/Depth_aware_Video_Captioning.ipynb) for videos | |
- [examples](https://youtu.be/RtkBplRuWhg?list=PLlPB25tBWqtVhj4Ink8hl9Evc2dlIX4Jh) of videos | |
""" | |
) | |
uploaded_file = st.file_uploader("", type=["jpg", "jpeg"]) | |
with st.spinner("Analyzing the image - Please wait a few seconds"): | |
img, depth_map, default = load_img(uploaded_file) | |
if default: | |
x0, y0, alpha0, font_size0, depth0, font0 = 0.02, 0.68, 0.99, 0.07, 0.12, 4 | |
text0 = "Pulp Fiction" | |
else: | |
x0, y0, alpha0, font_size0, depth0, font0 = 0.1, 0.9, 0.8, 0.08, 0.5, 0 | |
text0 = "Enter your text here" | |
colA, colB, colC = st.columns((13, 1, 1)) | |
with colA: | |
text = st.text_input("", text0) | |
with colB: | |
st.markdown("Color:") | |
with colC: | |
color = st.color_picker("", value="#FFFFFF") | |
col1, _, col2 = st.columns((4, 1, 4)) | |
with col1: | |
depth = st.select_slider( | |
"", | |
options=[i / 100 for i in range(101)], | |
value=depth0, | |
format_func=lambda x: "Foreground" | |
if x == 0.0 | |
else "Background" | |
if x == 1.0 | |
else "", | |
) | |
x = st.select_slider( | |
"", | |
options=[i / 100 for i in range(101)], | |
value=x0, | |
format_func=lambda x: "Left" if x == 0.0 else "Right" if x == 1.0 else "", | |
) | |
y = st.select_slider( | |
"", | |
options=[i / 100 for i in range(101)], | |
value=y0, | |
format_func=lambda x: "Bottom" if x == 0.0 else "Top" if x == 1.0 else "", | |
) | |
with col2: | |
font_size = st.select_slider( | |
"", | |
options=[0.04 + i / 100 for i in range(0, 17)], | |
value=font_size0, | |
format_func=lambda x: "Small font" | |
if x == 0.04 | |
else "Large font" | |
if x == 0.2 | |
else "", | |
) | |
alpha = st.select_slider( | |
"", | |
options=[i / 100 for i in range(101)], | |
value=alpha0, | |
format_func=lambda x: "Transparent" | |
if x == 0.0 | |
else "Opaque" | |
if x == 1.0 | |
else "", | |
) | |
font = st.selectbox("", FONTS, index=font0) | |
font = f"fonts/{font[6:]}.ttf" | |
captioned = add_caption( | |
img, | |
text, | |
x=x, | |
y=y, | |
depth=depth, | |
depth_map=depth_map, | |
font=font, | |
font_size=font_size, | |
alpha=alpha, | |
color=hex_to_rgb(color[1:]), | |
) | |
st.image(captioned) | |
if __name__ == "__main__": | |
main() | |