from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images
@st.cache(
show_spinner=False,
hash_funcs={
CLIPModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None,
},
)
def load():
model = CLIPModel.from_pretrained("openai/clip-vit-large-patch14")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-large-patch14")
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
for k in [0, 1]:
embeddings[k] = embeddings[k] / np.linalg.norm(
embeddings[k], axis=1, keepdims=True
)
embeddings[k] = embeddings[k] - np.mean(embeddings[k], axis=0)
return model, processor, df, embeddings
model, processor, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
result = model.get_text_features(**inputs).detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split(" EXCLUDING ")
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[k][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder])
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query])
)
k = 0 if corpus == "Unsplash" else 1
dot_product = embeddings[k] @ positive_embeddings.T
dot_product = dot_product - np.mean(dot_product, axis=0)
dot_product = dot_product / np.linalg.norm(dot_product, axis=0)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries)
dot_product2 = embeddings[k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.mean(dot_product2, axis=0)
dot_product2 = dot_product2 / np.linalg.norm(dot_product2, axis=0)
dot_product -= np.max(dot_product2, axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# Semantic image search
**Enter your query and hit enter**
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, 🤗 Hugging Face's [transformers library](https://huggingface.co./transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
"""
howto = """
- Click on an image to use it as a query and find similar images
- Several queries, including one based on an image, can be combined (use "**;**" as a separator)
- If the input includes "**EXCLUDING**", the part right of it will be used as a negative query
"""
def main():
st.markdown(
"""
""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
with st.sidebar.expander("Advanced use"):
st.markdown(howto)
_, c, _ = st.columns((1, 3, 1))
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="clouds at sunset")
corpus = st.radio("", ["Unsplash", "Movies"])
if len(query) > 0:
results = image_search(query, corpus)
clicked = clickable_images(
[result[0] for result in results],
titles=[result[1] for result in results],
div_style={
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
},
img_style={"margin": "2px", "height": "200px"},
)
if clicked >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if clicked != st.session_state["last_clicked"]:
change_query = True
if change_query:
st.session_state["query"] = f"[{corpus}:{results[clicked][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main()