File size: 8,681 Bytes
5185219 c81898a 0779f15 b59b1d0 5185219 c81898a 9033a8d 0779f15 3e50eda a55de09 aae8769 fbe7708 c81898a a55de09 aae8769 0779f15 aae8769 a55de09 c81898a aae8769 0779f15 5185219 a55de09 aae8769 5185219 5b1c1bd 5185219 aae8769 5185219 5b1c1bd aae8769 5b1c1bd aae8769 5b1c1bd aae8769 5b1c1bd 5185219 aae8769 5b1c1bd 5185219 a55de09 5185219 a55de09 c81898a a55de09 c81898a ff968d5 ee0cebf ba03fb2 9ea8c8c a55de09 74074fa 7a848b2 74074fa aae8769 c81898a a55de09 c81898a ff968d5 c81898a aae8769 555584f aae8769 555584f 7600dc3 586f7e5 55fea56 586f7e5 c81898a a55de09 74074fa 0779f15 3e50eda 0779f15 74074fa a55de09 5185219 a55de09 aae8769 9033a8d aae8769 0779f15 aae8769 8d49b55 aae8769 a55de09 aae8769 0779f15 aae8769 5185219 aae8769 5185219 aae8769 0779f15 3e50eda 5185219 a55de09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 |
from html import escape
import re
import streamlit as st
import pandas as pd, numpy as np
import torch
from transformers import CLIPProcessor, CLIPModel
from st_clickable_images import clickable_images
MODEL_NAMES = [
# "base-patch32",
# "base-patch16",
# "large-patch14",
"large-patch14-336"
]
@st.cache(allow_output_mutation=True)
def load():
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
models = {}
processors = {}
embeddings = {}
for name in MODEL_NAMES:
models[name] = CLIPModel.from_pretrained(f"openai/clip-vit-{name}").eval()
processors[name] = CLIPProcessor.from_pretrained(f"openai/clip-vit-{name}")
embeddings[name] = {
0: np.load(f"embeddings-vit-{name}.npy"),
1: np.load(f"embeddings2-vit-{name}.npy"),
}
for k in [0, 1]:
embeddings[name][k] = embeddings[name][k] / np.linalg.norm(
embeddings[name][k], axis=1, keepdims=True
)
return models, processors, df, embeddings
models, processors, df, embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def compute_text_embeddings(list_of_strings, name):
inputs = processors[name](text=list_of_strings, return_tensors="pt", padding=True)
with torch.no_grad():
result = models[name].get_text_features(**inputs).detach().numpy()
return result / np.linalg.norm(result, axis=1, keepdims=True)
def image_search(query, corpus, name, n_results=24):
positive_embeddings = None
def concatenate_embeddings(e1, e2):
if e1 is None:
return e2
else:
return np.concatenate((e1, e2), axis=0)
splitted_query = query.split("EXCLUDING ")
dot_product = 0
k = 0 if corpus == "Unsplash" else 1
if len(splitted_query[0]) > 0:
positive_queries = splitted_query[0].split(";")
for positive_query in positive_queries:
match = re.match(r"\[(Movies|Unsplash):(\d{1,5})\](.*)", positive_query)
if match:
corpus2, idx, remainder = match.groups()
idx, remainder = int(idx), remainder.strip()
k2 = 0 if corpus2 == "Unsplash" else 1
positive_embeddings = concatenate_embeddings(
positive_embeddings, embeddings[name][k2][idx : idx + 1, :]
)
if len(remainder) > 0:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([remainder], name)
)
else:
positive_embeddings = concatenate_embeddings(
positive_embeddings, compute_text_embeddings([positive_query], name)
)
dot_product = embeddings[name][k] @ positive_embeddings.T
dot_product = dot_product - np.median(dot_product, axis=0)
dot_product = dot_product / np.max(dot_product, axis=0, keepdims=True)
dot_product = np.min(dot_product, axis=1)
if len(splitted_query) > 1:
negative_queries = (" ".join(splitted_query[1:])).split(";")
negative_embeddings = compute_text_embeddings(negative_queries, name)
dot_product2 = embeddings[name][k] @ negative_embeddings.T
dot_product2 = dot_product2 - np.median(dot_product2, axis=0)
dot_product2 = dot_product2 / np.max(dot_product2, axis=0, keepdims=True)
dot_product -= np.max(np.maximum(dot_product2, 0), axis=1)
results = np.argsort(dot_product)[-1 : -n_results - 1 : -1]
return [
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
i,
)
for i in results
]
description = """
# Semantic image search
**Enter your query and hit enter**
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, 🤗 Hugging Face's [transformers library](https://huggingface.co./transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
*Inspired by [Unsplash Image Search](https://github.com/haltakov/natural-language-image-search) from Vladimir Haltakov and [Alph, The Sacred River](https://github.com/thoppe/alph-the-sacred-river) from Travis Hoppe*
"""
howto = """
- Click on an image to use it as a query and find similar images
- Several queries, including one based on an image, can be combined (use "**;**" as a separator)
- If the input includes "**EXCLUDING**", the part right of it will be used as a negative query
"""
div_style = {
"display": "flex",
"justify-content": "center",
"flex-wrap": "wrap",
}
def main():
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
.row-widget {
margin-top: -25px;
}
section>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
with st.sidebar.expander("Advanced use"):
st.markdown(howto)
# mode = st.sidebar.selectbox(
# "", ["Results for ViT-L/14@336px", "Comparison of 2 models"], index=0
# )
_, c, _ = st.columns((1, 3, 1))
if "query" in st.session_state:
query = c.text_input("", value=st.session_state["query"])
else:
query = c.text_input("", value="clouds at sunset")
corpus = st.radio("", ["Unsplash", "Movies"])
models_dict = {
"ViT-B/32 (quicker)": "base-patch32",
"ViT-B/16 (average)": "base-patch16",
# "ViT-L/14 (slow)": "large-patch14",
"ViT-L/14@336px (slower)": "large-patch14-336",
}
if False: # "Comparison" in mode:
c1, c2 = st.columns((1, 1))
selection1 = c1.selectbox("", models_dict.keys(), index=0)
selection2 = c2.selectbox("", models_dict.keys(), index=2)
name1 = models_dict[selection1]
name2 = models_dict[selection2]
else:
name1 = MODEL_NAMES[-1]
if len(query) > 0:
results1 = image_search(query, corpus, name1)
if False: # "Comparison" in mode:
with c1:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name1 + "1",
)
results2 = image_search(query, corpus, name2)
with c2:
clicked2 = clickable_images(
[result[0] for result in results2],
titles=[result[1] for result in results2],
div_style=div_style,
img_style={"margin": "2px", "height": "150px"},
key=query + corpus + name2 + "2",
)
else:
clicked1 = clickable_images(
[result[0] for result in results1],
titles=[result[1] for result in results1],
div_style=div_style,
img_style={"margin": "2px", "height": "200px"},
key=query + corpus + name1 + "1",
)
clicked2 = -1
if clicked2 >= 0 or clicked1 >= 0:
change_query = False
if "last_clicked" not in st.session_state:
change_query = True
else:
if max(clicked2, clicked1) != st.session_state["last_clicked"]:
change_query = True
if change_query:
if clicked1 >= 0:
st.session_state["query"] = f"[{corpus}:{results1[clicked1][2]}]"
# elif clicked2 >= 0:
# st.session_state["query"] = f"[{corpus}:{results2[clicked2][2]}]"
st.experimental_rerun()
if __name__ == "__main__":
main()
|