Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoImageProcessor, AutoTokenizer, AutoModel | |
import torch | |
repo_id = "OpenGVLab/InternVL2-1B" | |
# Load the image processor, tokenizer, and model directly from the Hub | |
image_processor = AutoImageProcessor.from_pretrained(repo_id, trust_remote_code=True) | |
tokenizer = AutoTokenizer.from_pretrained(repo_id, trust_remote_code=True) | |
model = AutoModel.from_pretrained( | |
repo_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16 # Use half-precision for efficiency | |
) | |
# Move model to the appropriate device | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
def analyze_image(image): | |
try: | |
img = image.convert("RGB") | |
text = "describe this image" | |
# Process the image | |
image_inputs = image_processor(images=img, return_tensors="pt").to(device) | |
# Process the text | |
text_inputs = tokenizer(text, return_tensors="pt").to(device) | |
# Combine the inputs | |
inputs = { | |
"input_ids": text_inputs["input_ids"], | |
"attention_mask": text_inputs["attention_mask"], | |
"pixel_values": image_inputs["pixel_values"], | |
} | |
# Generate outputs | |
outputs = model.generate(**inputs) | |
# Decode the outputs | |
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
return generated_text | |
except Exception as e: | |
return f"An error occurred: {str(e)}" | |
demo = gr.Interface( | |
fn=analyze_image, | |
inputs=gr.Image(type="pil"), | |
outputs="text", | |
title="Image Description using InternVL2-1B", | |
description="Upload an image and get a description generated by the InternVL2-1B model." | |
) | |
if __name__ == "__main__": | |
demo.launch() |