Spaces:
Sleeping
Sleeping
Refactor app with better Document retrieval embedding and better chat streaming
Browse files- app.py +121 -146
- requirements.txt +4 -8
app.py
CHANGED
@@ -1,155 +1,130 @@
|
|
1 |
import os
|
2 |
-
import
|
3 |
|
4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
-
from langchain_community.
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
""
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
# Load the file using the appropriate loader
|
37 |
-
if extension == ".pdf":
|
38 |
-
loader = PyPDFLoader(file_name)
|
39 |
-
elif extension == ".docx":
|
40 |
-
loader = Docx2txtLoader(file_name)
|
41 |
-
elif extension == ".txt":
|
42 |
-
loader = TextLoader(file_name)
|
43 |
-
else:
|
44 |
-
st.error("This document format is not supported!")
|
45 |
-
return None
|
46 |
-
|
47 |
-
documents = loader.load()
|
48 |
-
|
49 |
-
text_splitter = RecursiveCharacterTextSplitter(
|
50 |
-
chunk_size=1000,
|
51 |
-
chunk_overlap=200,
|
52 |
)
|
53 |
-
chunks = text_splitter.split_documents(documents)
|
54 |
-
embeddings = OpenAIEmbeddings(api_key=st.session_state.api_key)
|
55 |
-
vector_store = Chroma.from_documents(chunks, embeddings)
|
56 |
-
return vector_store
|
57 |
-
|
58 |
-
|
59 |
-
def main():
|
60 |
-
"""
|
61 |
-
The main function that runs the Streamlit app.
|
62 |
-
"""
|
63 |
|
64 |
-
|
65 |
-
st.info("Please add your OpenAI API key to continue.")
|
66 |
|
67 |
-
if len(msgs.messages) == 0:
|
68 |
-
msgs.add_ai_message(
|
69 |
-
"""
|
70 |
-
Hello, how can I help you?
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
# Render current messages from StreamlitChatMessageHistory
|
77 |
-
for msg in msgs.messages:
|
78 |
-
st.chat_message(msg.type).write(msg.content)
|
79 |
-
|
80 |
-
# If user inputs a new prompt, generate and draw a new response
|
81 |
-
if question := st.chat_input(
|
82 |
-
placeholder="Chat with your document",
|
83 |
-
disabled=(not st.session_state.api_key),
|
84 |
):
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
)
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
)
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
)
|
123 |
-
st.session_state.api_key = openai_api_key
|
124 |
-
|
125 |
-
with st.form("my_form"):
|
126 |
-
|
127 |
-
uploaded_file = st.file_uploader(
|
128 |
-
"Select a file", type=["pdf", "docx", "txt"], key="file_uploader"
|
129 |
-
)
|
130 |
-
|
131 |
-
add_file = st.form_submit_button(
|
132 |
-
"Process File",
|
133 |
-
disabled=(not uploaded_file and not openai_api_key),
|
134 |
-
)
|
135 |
-
if (
|
136 |
-
add_file
|
137 |
-
and uploaded_file
|
138 |
-
and st.session_state.api_key.startswith("sk-")
|
139 |
-
):
|
140 |
-
with st.spinner("💭 Thinking..."):
|
141 |
-
vector_store = load_and_process_file(uploaded_file)
|
142 |
-
|
143 |
-
if vector_store:
|
144 |
-
msgs.add_ai_message(
|
145 |
-
f"""
|
146 |
-
File: `{uploaded_file.name}`, processed successfully!
|
147 |
-
|
148 |
-
Feel free to ask me any question.
|
149 |
-
"""
|
150 |
-
)
|
151 |
-
|
152 |
-
|
153 |
-
if __name__ == "__main__":
|
154 |
-
build_sidebar()
|
155 |
-
main()
|
|
|
1 |
import os
|
2 |
+
import tempfile
|
3 |
|
4 |
+
import streamlit as st
|
5 |
+
from langchain.callbacks.base import BaseCallbackHandler
|
6 |
+
from langchain.chains import ConversationalRetrievalChain
|
7 |
+
from langchain.chat_models import ChatOpenAI
|
8 |
+
from langchain.document_loaders import PyPDFLoader
|
9 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.memory.chat_message_histories import StreamlitChatMessageHistory
|
12 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
13 |
+
from langchain_community.vectorstores import DocArrayInMemorySearch
|
14 |
+
|
15 |
+
st.set_page_config(page_title="📚 InkChatGPT: Chat with Documents", page_icon="📚")
|
16 |
+
st.subheader("📚 InkChatGPT")
|
17 |
+
st.write("Chat with Documents")
|
18 |
+
|
19 |
+
@st.cache_resource(ttl="1h")
|
20 |
+
def configure_retriever(uploaded_files):
|
21 |
+
# Read documents
|
22 |
+
docs = []
|
23 |
+
temp_dir = tempfile.TemporaryDirectory()
|
24 |
+
for file in uploaded_files:
|
25 |
+
temp_filepath = os.path.join(temp_dir.name, file.name)
|
26 |
+
with open(temp_filepath, "wb") as f:
|
27 |
+
f.write(file.getvalue())
|
28 |
+
loader = PyPDFLoader(temp_filepath)
|
29 |
+
docs.extend(loader.load())
|
30 |
+
|
31 |
+
# Split documents
|
32 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1500, chunk_overlap=200)
|
33 |
+
splits = text_splitter.split_documents(docs)
|
34 |
+
|
35 |
+
# Create embeddings and store in vectordb
|
36 |
+
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2")
|
37 |
+
vectordb = DocArrayInMemorySearch.from_documents(splits, embeddings)
|
38 |
+
|
39 |
+
# Define retriever
|
40 |
+
retriever = vectordb.as_retriever(
|
41 |
+
search_type="mmr", search_kwargs={"k": 2, "fetch_k": 4}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
return retriever
|
|
|
45 |
|
|
|
|
|
|
|
|
|
46 |
|
47 |
+
class StreamHandler(BaseCallbackHandler):
|
48 |
+
def __init__(
|
49 |
+
self, container: st.delta_generator.DeltaGenerator, initial_text: str = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
):
|
51 |
+
self.container = container
|
52 |
+
self.text = initial_text
|
53 |
+
self.run_id_ignore_token = None
|
54 |
+
|
55 |
+
def on_llm_start(self, serialized: dict, prompts: list, **kwargs):
|
56 |
+
# Workaround to prevent showing the rephrased question as output
|
57 |
+
if prompts[0].startswith("Human"):
|
58 |
+
self.run_id_ignore_token = kwargs.get("run_id")
|
59 |
+
|
60 |
+
def on_llm_new_token(self, token: str, **kwargs) -> None:
|
61 |
+
if self.run_id_ignore_token == kwargs.get("run_id", False):
|
62 |
+
return
|
63 |
+
self.text += token
|
64 |
+
self.container.markdown(self.text)
|
65 |
+
|
66 |
+
|
67 |
+
class PrintRetrievalHandler(BaseCallbackHandler):
|
68 |
+
def __init__(self, container):
|
69 |
+
self.status = container.status("**Context Retrieval**")
|
70 |
+
|
71 |
+
def on_retriever_start(self, serialized: dict, query: str, **kwargs):
|
72 |
+
self.status.write(f"**Question:** {query}")
|
73 |
+
self.status.update(label=f"**Context Retrieval:** {query}")
|
74 |
+
|
75 |
+
def on_retriever_end(self, documents, **kwargs):
|
76 |
+
for idx, doc in enumerate(documents):
|
77 |
+
source = os.path.basename(doc.metadata["source"])
|
78 |
+
self.status.write(f"**Document {idx} from {source}**")
|
79 |
+
self.status.markdown(doc.page_content)
|
80 |
+
self.status.update(state="complete")
|
81 |
+
|
82 |
+
|
83 |
+
openai_api_key = st.sidebar.text_input("OpenAI API Key", type="password")
|
84 |
+
if not openai_api_key:
|
85 |
+
st.info("Please add your OpenAI API key to continue.")
|
86 |
+
st.stop()
|
87 |
+
|
88 |
+
uploaded_files = st.sidebar.file_uploader(
|
89 |
+
label="Upload PDF files", type=["pdf"], accept_multiple_files=True
|
90 |
+
)
|
91 |
+
if not uploaded_files:
|
92 |
+
st.info("Please upload PDF documents to continue.")
|
93 |
+
st.stop()
|
94 |
+
|
95 |
+
retriever = configure_retriever(uploaded_files)
|
96 |
+
|
97 |
+
# Setup memory for contextual conversation
|
98 |
+
msgs = StreamlitChatMessageHistory()
|
99 |
+
memory = ConversationBufferMemory(
|
100 |
+
memory_key="chat_history", chat_memory=msgs, return_messages=True
|
101 |
+
)
|
102 |
+
|
103 |
+
# Setup LLM and QA chain
|
104 |
+
llm = ChatOpenAI(
|
105 |
+
model_name="gpt-3.5-turbo",
|
106 |
+
openai_api_key=openai_api_key,
|
107 |
+
temperature=0,
|
108 |
+
streaming=True,
|
109 |
+
)
|
110 |
+
qa_chain = ConversationalRetrievalChain.from_llm(
|
111 |
+
llm, retriever=retriever, memory=memory, verbose=True
|
112 |
+
)
|
113 |
+
|
114 |
+
if len(msgs.messages) == 0 or st.sidebar.button("Clear message history"):
|
115 |
+
msgs.clear()
|
116 |
+
msgs.add_ai_message("How can I help you?")
|
117 |
+
|
118 |
+
avatars = {"human": "user", "ai": "assistant"}
|
119 |
+
for msg in msgs.messages:
|
120 |
+
st.chat_message(avatars[msg.type]).write(msg.content)
|
121 |
+
|
122 |
+
if user_query := st.chat_input(placeholder="Ask me anything!"):
|
123 |
+
st.chat_message("user").write(user_query)
|
124 |
+
|
125 |
+
with st.chat_message("assistant"):
|
126 |
+
retrieval_handler = PrintRetrievalHandler(st.container())
|
127 |
+
stream_handler = StreamHandler(st.empty())
|
128 |
+
response = qa_chain.run(
|
129 |
+
user_query, callbacks=[retrieval_handler, stream_handler]
|
130 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,11 +1,7 @@
|
|
|
|
|
|
|
|
1 |
langchain
|
2 |
-
langchain_openai
|
3 |
streamlit
|
4 |
streamlit_chat
|
5 |
-
|
6 |
-
openai
|
7 |
-
tiktoken
|
8 |
-
pypdf
|
9 |
-
docx2txt
|
10 |
-
watchdog
|
11 |
-
pysqlite3-binary
|
|
|
1 |
+
openai
|
2 |
+
sentence-transformers
|
3 |
+
docarray
|
4 |
langchain
|
|
|
5 |
streamlit
|
6 |
streamlit_chat
|
7 |
+
pypdf
|
|
|
|
|
|
|
|
|
|
|
|