Spaces:
Sleeping
Sleeping
import gradio as gr | |
from datetime import date, timedelta | |
from langchain.document_loaders import ArxivLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.llms import HuggingFaceHub | |
# from langchain.llms import FakeListLLM | |
from langchain.chains import LLMChain, StuffDocumentsChain | |
from langchain.prompts import PromptTemplate | |
from langchain.schema import Document | |
LOAD_MAX_DOCS = 100 | |
min_date = (date.today() - timedelta(days=2)).strftime('%Y%m%d') | |
max_date = date.today().strftime('%Y%m%d') | |
query = f"cat:hep-th AND submittedDate:[{min_date} TO {max_date}]" | |
loader = ArxivLoader(query=query, load_max_docs=LOAD_MAX_DOCS) | |
# CHUNK_SIZE = 1000 | |
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=CHUNK_SIZE) | |
embeddings = HuggingFaceEmbeddings() | |
document_prompt = PromptTemplate( | |
template="Title: {Title}\nContent: {page_content}", | |
input_variables=["page_content", "Title"], | |
) | |
prompt = PromptTemplate( | |
template= | |
"""Write a personalised newsletter for a researcher. The researcher describes his work as follows:"{context}". Base the newsletter on the following articles:\n\n"{text}"\n\nNEWSLETTER:""", | |
input_variables=["context", "text"]) | |
# llm = FakeListLLM(responses=list(map(str, range(100)))) | |
REPO_ID = "HuggingFaceH4/starchat-beta" | |
llm = HuggingFaceHub( | |
repo_id=REPO_ID, | |
model_kwargs={ | |
"max_new_tokens": 1024, | |
"do_sample": True, | |
"temperature": 0.8, | |
"top_p": 0.9 | |
} | |
) | |
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True) | |
stuff_chain = StuffDocumentsChain( | |
llm_chain=llm_chain, | |
document_variable_name="text", | |
document_prompt=document_prompt, | |
verbose=True, | |
) | |
def process_document(doc: Document): | |
metadata = doc.metadata | |
metadata["Body"] = doc.page_content | |
return Document(page_content=doc.metadata["Summary"], metadata=metadata) | |
def get_data(user_query: str): | |
docs = loader.load() | |
docs = [process_document(doc) for doc in docs] | |
db = Chroma.from_documents(docs, embeddings) | |
retriever = db.as_retriever() | |
relevant_docs = retriever.get_relevant_documents(user_query) | |
print(relevant_docs[0].metadata) | |
articles = "" | |
for doc in relevant_docs: | |
articles += f"**Title: {doc.metadata['Title']}**\n\nAbstract: {doc.metadata['Summary']}\n\n" | |
output = stuff_chain({"input_documents": relevant_docs, "context": user_query}) | |
return f"{output["output_text"]}\n\n\n\nUsed articles:\n\n{output}" | |
demo = gr.Interface( | |
fn=get_data, | |
inputs="text", | |
outputs=gr.Markdown(), | |
title="Document Filter", | |
description="Enter a query to filter the list of documents." | |
) | |
demo.queue().launch() | |