ArxivNewsLetter / app.py
vincentmin's picture
Update app.py
93f881f
raw
history blame
3.59 kB
import gradio as gr
from datetime import date, timedelta
from langchain.document_loaders import ArxivLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFaceHub
from langchain.chains import LLMChain, StuffDocumentsChain
from langchain.prompts import PromptTemplate
from langchain.schema import Document
LOAD_MAX_DOCS = 100
embeddings = HuggingFaceEmbeddings()
document_prompt = PromptTemplate(
template="Title: {Title}\nContent: {page_content}",
input_variables=["page_content", "Title"],
)
prompt = PromptTemplate(
template="""Write a personalised newsletter for a researcher on the most recent exciting developments in his field. The researcher describes his work as follows:"{context}". Base the newsletter on the articles below. Extract the most exciting points and combine them into an excillerating newsletter. Use Markdown format\n#ARTICLES\n\n"{text}"\n\nNEWSLETTER:\n# Your AI curated newsletter\n""",
input_variables=["context", "text"])
REPO_ID = "HuggingFaceH4/starchat-beta"
llm = HuggingFaceHub(
repo_id=REPO_ID,
model_kwargs={
"max_new_tokens": 300,
"do_sample": True,
"temperature": 0.8,
"top_p": 0.9
}
)
llm_chain = LLMChain(llm=llm, prompt=prompt, verbose=True)
stuff_chain = StuffDocumentsChain(
llm_chain=llm_chain,
document_variable_name="text",
document_prompt=document_prompt,
verbose=True,
)
def process_document(doc: Document):
metadata = doc.metadata
metadata["Body"] = doc.page_content
return Document(page_content=doc.metadata["Summary"], metadata=metadata)
def get_data(lookback_days: float, user_query: str):
print("User query:", user_query)
max_date = date.today()
min_date = (max_date - timedelta(days=lookback_days))
query = f"cat:hep-th AND submittedDate:[{min_date.strftime('%Y%m%d')} TO {max_date.strftime('%Y%m%d')}]"
loader = ArxivLoader(query=query, load_max_docs=LOAD_MAX_DOCS)
docs = loader.load()
docs = [process_document(doc) for doc in docs]
db = Chroma.from_documents(docs, embeddings)
retriever = db.as_retriever()
relevant_docs = retriever.get_relevant_documents(user_query)
print(relevant_docs[0].metadata)
articles = ""
for doc in relevant_docs:
articles += f"**Title: {doc.metadata['Title']}**\n\nAbstract: {doc.metadata['Summary']}\n\n"
output = stuff_chain({"input_documents": relevant_docs, "context": user_query})
output_text = output["output_text"].split("<|end|>")[0]
print("LLM output:", output_text)
return f"# Your AI curated newsletter\n{output['output_text']}\n\n\n\n## Used articles:\n\n{articles}"
with gr.Blocks() as demo:
gr.Markdown(
"""
# Arxiv AI Curated Newsletter
Get a newsletter-style summary of today's Arxiv articles personalised to your field of research.
"""
)
with gr.Accordion("Parameters", open=False):
lookback_days = gr.Number(2, label="Articles from this many days in the past will be searched through.", minimum=1, maximum=7)
input_text = gr.Textbox(placeholder="Describe your field of research in a few words")
gr.Examples(
[["Supersymmetric Conformal Field Theory"], ["Black hole information paradox"]],
input_text,
)
output = gr.Markdown()
btn = gr.Button(value="Submit")
btn.click(fn=get_data, inputs=[lookback_days,input_text], outputs=output)
demo.queue().launch()