File size: 6,776 Bytes
ba13ad9
b03b9c5
d8ad8f9
 
f0f4b7b
ba13ad9
d8ad8f9
 
93f614e
d8ad8f9
b03b9c5
d8ad8f9
b03b9c5
d8ad8f9
 
 
 
6ec7211
 
d8ad8f9
a39c20d
d8ad8f9
a39c20d
 
043cce0
d8ad8f9
 
6ec7211
 
d8ad8f9
 
 
 
1178065
d8ad8f9
 
1178065
d8ad8f9
 
 
 
 
 
 
 
a39c20d
 
 
d8ad8f9
 
 
 
 
e0567a1
b03b9c5
f55597f
b03b9c5
 
 
d8ad8f9
b03b9c5
 
 
389126e
f55597f
 
d8ad8f9
b03b9c5
 
d8ad8f9
02e42c9
d8ad8f9
 
 
 
 
 
 
 
 
 
 
02e42c9
d8ad8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ec7211
d8ad8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b03b9c5
 
 
02e42c9
389126e
 
 
 
 
d8ad8f9
e452aa8
389126e
 
 
e452aa8
 
 
 
 
389126e
 
 
b03b9c5
 
ba13ad9
 
9c2a268
f95ec9c
9c2a268
 
 
 
d8ad8f9
02e42c9
 
 
 
 
 
 
 
 
b03b9c5
03848be
b03b9c5
 
 
 
d8ad8f9
14118ac
b03b9c5
 
 
 
 
 
 
d8ad8f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02e42c9
d8ad8f9
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#Using codes from killerz3/PodGen & eswardivi/Podcastify
#For ZeroGPU limit, I roll back to inference API. You can use local or HF model also, remove the relative comment sign, it works;
import json
import httpx
import os
import re
import asyncio
import edge_tts
import tempfile
import gradio as gr
from huggingface_hub import AsyncInferenceClient
from pydub import AudioSegment
#from transformers import AutoModelForCausalLM, AutoTokenizer

from moviepy.editor import AudioFileClip, concatenate_audioclips

system_prompt = '''
    You are an talkshow podcast generator. You have to create short conversations between Alice and Bob that gives an overview of the News given by the user.
    Please provide the script and output strictly in the following JSON format:
    {
      "title": "[string]",
      "content": {
        "Alice_0": "[string]",
        "BOB_0": "[string]",
        ...
      }
    }
    #Please note that the [string] you generate now must be in based on the tone of people's daily life.
    #No more than five rounds of conversation, be concise.
'''

DESCRIPTION = '''
<div>
<h1 style="text-align: center;">Link to Podcast</h1>
<p>A podcast talking about the link's content you provided.</p>
<p>πŸ”Ž Paste a website link with http/https.</p>
<p>πŸ¦• Now using inference API. Modify codes to use transformer.</p>
</div>
'''

css = """
h1 {
    text-align: center;
    display: block;
}
p {
    text-align: center;
}
footer {
    display:none !important
}
"""

MODEL_ID = "mistralai/Mistral-7B-Instruct-v0.3"
Client = AsyncInferenceClient(MODEL_ID)


"""
# USING LOCAL MODEL
model = AutoModelForCausalLM.from_pretrained(
     MODEL_ID,
     torch_dtype=torch.float16,
     device_map="auto"
).eval()

tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)

"""


def validate_url(url):
    try:
        response = httpx.get(url, timeout=60.0)
        response.raise_for_status()
        return response.text
    except httpx.RequestError as e:
        return f"An error occurred while requesting {url}: {str(e)}"
    except httpx.HTTPStatusError as e:
        return f"Error response {e.response.status_code} while requesting {url}"
    except Exception as e:
        return f"An unexpected error occurred: {str(e)}"

def fetch_text(url):
    print("Entered Webpage Extraction")
    prefix_url = "https://r.jina.ai/"
    full_url = prefix_url + url
    print(full_url)
    print("Exited Webpage Extraction")
    return validate_url(full_url)

async def text_to_speech(text, voice, filename):
    communicate = edge_tts.Communicate(text, voice)
    await communicate.save(filename)


async def gen_show(script):
    title = script['title']
    content = script['content']

    temp_files = []

    tasks = []
    for key, text in content.items():
        speaker = key.split('_')[0]  # Extract the speaker name
        index = key.split('_')[1]    # Extract the dialogue index
        voice = "en-US-JennyNeural" if speaker == "Alice" else "en-US-GuyNeural"

        # Create temporary file for each speaker's dialogue
        temp_file = tempfile.NamedTemporaryFile(suffix='.mp3', delete=False)
        temp_files.append(temp_file.name)

        filename = temp_file.name
        tasks.append(text_to_speech(text, voice, filename))
        print(f"Generated audio for {speaker}_{index}: {filename}")

    await asyncio.gather(*tasks)

    # Combine the audio files using moviepy
    audio_clips = [AudioFileClip(temp_file) for temp_file in temp_files]
    combined = concatenate_audioclips(audio_clips)

    # Create temporary file for the combined output
    output_filename = tempfile.NamedTemporaryFile(suffix='.mp3', delete=False).name

    # Save the combined file
    combined.write_audiofile(output_filename)
    print(f"Combined audio saved as: {output_filename}")

    # Clean up temporary files
    for temp_file in temp_files:
        os.remove(temp_file)
        print(f"Deleted temporary file: {temp_file}")

    return output_filename
    
"""
# USING LOCAL MODEL
def generator(messages):
    input_ids = tokenizer.apply_chat_template(
        conversation=messages,
        add_generation_prompt=True,
        tokenize=True,
        return_tensors='pt'
    )
    
    output_ids = model.generate(
        input_ids.to('cuda'), 
        eos_token_id=tokenizer.eos_token_id,
        max_new_tokens=4096,
        temperature=0.5,
        repetition_penalty=1.2,
        )
    
    results = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
    print(results)
    return results
"""


def extract_content(text):
    """Extracts the JSON content from the given text."""
    match = re.search(r'\{(?:[^{}]|\{[^{}]*\})*\}', text, re.DOTALL)
    if match:
        return match.group(0)
    else:
        return None

async def main(link):
    if not link.startswith("http://") and not link.startswith("https://"):
        return "URL must start with 'http://' or 'https://'",None

    text = fetch_text(link)

    if "Error" in text:
        return text, None

    prompt = f"News: {text} json:"
    formatted_prompt = system_prompt + "\n\n\n" + prompt
    # messages = [
    #     {"role": "system", "content": system_prompt},
    #     {"role": "user", "content": prompt},
    # ]

    answer = await Client.text_generation(
        prompt=formatted_prompt, 
        max_new_tokens=4096,
        temperature=0.7,
        return_full_text=False)
    print(answer)
    #generated_script = extract_content(generator(messages))
    generated_script = extract_content(answer)
    print("Generated Script:"+generated_script)

    # Check if the generated_script is empty or not valid JSON
    if not generated_script or not generated_script.strip().startswith('{'):
        raise ValueError("Failed to generate a valid script.")

    script_json = json.loads(generated_script)  # Use the generated script as input
    output_filename = await gen_show(script_json)
    print("Output File:"+output_filename)

    # Read the generated audio file
    return output_filename

with gr.Blocks(theme='soft', css=css, title="Musen") as iface:
    with gr.Accordion(""):
        gr.Markdown(DESCRIPTION)
    with gr.Row():
        output_box = gr.Audio(label="Podcast", type="filepath", interactive=False, autoplay=True, elem_classes="audio")  # Create an output textbox
    with gr.Row():
        input_box = gr.Textbox(label="Link", placeholder="Enter a http link")
    with gr.Row():
        submit_btn = gr.Button("πŸš€ Send")  # Create a submit button
        clear_btn = gr.ClearButton(output_box, value="πŸ—‘οΈ Clear") # Create a clear button

    # Set up the event listeners
    submit_btn.click(main, inputs=input_box, outputs=output_box)


#gr.close_all()

iface.queue().launch(show_api=False)  # Launch the Gradio interface