Spaces:
Running
Running
victorisgeek
commited on
Commit
•
872c724
1
Parent(s):
4b0bc65
Upload 6 files
Browse files- app.py +93 -0
- refacer.py +262 -0
- requirements-COREML.txt +12 -0
- requirements-GPU.txt +12 -0
- requirements.txt +12 -0
- script.py +41 -0
app.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from refacer import Refacer
|
3 |
+
import argparse
|
4 |
+
import ngrok
|
5 |
+
|
6 |
+
parser = argparse.ArgumentParser(description='Refacer')
|
7 |
+
parser.add_argument("--max_num_faces", type=int, help="Max number of faces on UI", default=5)
|
8 |
+
parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true")
|
9 |
+
parser.add_argument("--share_gradio", help="Share Gradio", default=False, action="store_true")
|
10 |
+
parser.add_argument("--server_name", type=str, help="Server IP address", default="127.0.0.1")
|
11 |
+
parser.add_argument("--server_port", type=int, help="Server port", default=7860)
|
12 |
+
parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False,action="store_true")
|
13 |
+
parser.add_argument("--ngrok", type=str, help="Use ngrok", default=None)
|
14 |
+
parser.add_argument("--ngrok_region", type=str, help="ngrok region", default="us")
|
15 |
+
args = parser.parse_args()
|
16 |
+
|
17 |
+
refacer = Refacer(force_cpu=args.force_cpu,colab_performance=args.colab_performance)
|
18 |
+
|
19 |
+
num_faces=args.max_num_faces
|
20 |
+
|
21 |
+
# Connect to ngrok for ingress
|
22 |
+
def connect(token, port, options):
|
23 |
+
account = None
|
24 |
+
if token is None:
|
25 |
+
token = 'None'
|
26 |
+
else:
|
27 |
+
if ':' in token:
|
28 |
+
# token = authtoken:username:password
|
29 |
+
token, username, password = token.split(':', 2)
|
30 |
+
account = f"{username}:{password}"
|
31 |
+
|
32 |
+
# For all options see: https://github.com/ngrok/ngrok-py/blob/main/examples/ngrok-connect-full.py
|
33 |
+
if not options.get('authtoken_from_env'):
|
34 |
+
options['authtoken'] = token
|
35 |
+
if account:
|
36 |
+
options['basic_auth'] = account
|
37 |
+
|
38 |
+
|
39 |
+
try:
|
40 |
+
public_url = ngrok.connect(f"127.0.0.1:{port}", **options).url()
|
41 |
+
except Exception as e:
|
42 |
+
print(f'Invalid ngrok authtoken? ngrok connection aborted due to: {e}\n'
|
43 |
+
f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken')
|
44 |
+
else:
|
45 |
+
print(f'ngrok connected to localhost:{port}! URL: {public_url}\n'
|
46 |
+
'You can use this link after the launch is complete.')
|
47 |
+
|
48 |
+
|
49 |
+
def run(*vars):
|
50 |
+
video_path=vars[0]
|
51 |
+
origins=vars[1:(num_faces+1)]
|
52 |
+
destinations=vars[(num_faces+1):(num_faces*2)+1]
|
53 |
+
thresholds=vars[(num_faces*2)+1:]
|
54 |
+
|
55 |
+
faces = []
|
56 |
+
for k in range(0,num_faces):
|
57 |
+
if origins[k] is not None and destinations[k] is not None:
|
58 |
+
faces.append({
|
59 |
+
'origin':origins[k],
|
60 |
+
'destination':destinations[k],
|
61 |
+
'threshold':thresholds[k]
|
62 |
+
})
|
63 |
+
|
64 |
+
return refacer.reface(video_path,faces)
|
65 |
+
|
66 |
+
origin = []
|
67 |
+
destination = []
|
68 |
+
thresholds = []
|
69 |
+
|
70 |
+
with gr.Blocks() as demo:
|
71 |
+
with gr.Row():
|
72 |
+
gr.Markdown("# Refacer")
|
73 |
+
with gr.Row():
|
74 |
+
video=gr.Video(label="Original video",format="mp4")
|
75 |
+
video2=gr.Video(label="Refaced video",interactive=False,format="mp4")
|
76 |
+
|
77 |
+
for i in range(0,num_faces):
|
78 |
+
with gr.Tab(f"Face #{i+1}"):
|
79 |
+
with gr.Row():
|
80 |
+
origin.append(gr.Image(label="Face to replace"))
|
81 |
+
destination.append(gr.Image(label="Destination face"))
|
82 |
+
with gr.Row():
|
83 |
+
thresholds.append(gr.Slider(label="Threshold",minimum=0.0,maximum=1.0,value=0.2))
|
84 |
+
with gr.Row():
|
85 |
+
button=gr.Button("Reface", variant="primary")
|
86 |
+
|
87 |
+
button.click(fn=run,inputs=[video]+origin+destination+thresholds,outputs=[video2])
|
88 |
+
|
89 |
+
if args.ngrok is not None:
|
90 |
+
connect(args.ngrok, args.server_port, {'region': args.ngrok_region, 'authtoken_from_env': False})
|
91 |
+
|
92 |
+
#demo.launch(share=True,server_name="0.0.0.0", show_error=True)
|
93 |
+
demo.queue().launch(show_error=True,share=args.share_gradio,server_name=args.server_name,server_port=args.server_port)
|
refacer.py
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import onnxruntime as rt
|
3 |
+
import sys
|
4 |
+
from insightface.app import FaceAnalysis
|
5 |
+
sys.path.insert(1, './recognition')
|
6 |
+
from scrfd import SCRFD
|
7 |
+
from arcface_onnx import ArcFaceONNX
|
8 |
+
import os.path as osp
|
9 |
+
import os
|
10 |
+
from pathlib import Path
|
11 |
+
from tqdm import tqdm
|
12 |
+
import ffmpeg
|
13 |
+
import random
|
14 |
+
import multiprocessing as mp
|
15 |
+
from concurrent.futures import ThreadPoolExecutor
|
16 |
+
from insightface.model_zoo.inswapper import INSwapper
|
17 |
+
import psutil
|
18 |
+
from enum import Enum
|
19 |
+
from insightface.app.common import Face
|
20 |
+
from insightface.utils.storage import ensure_available
|
21 |
+
import re
|
22 |
+
import subprocess
|
23 |
+
|
24 |
+
class RefacerMode(Enum):
|
25 |
+
CPU, CUDA, COREML, TENSORRT = range(1, 5)
|
26 |
+
|
27 |
+
class Refacer:
|
28 |
+
def __init__(self,force_cpu=False,colab_performance=False):
|
29 |
+
self.first_face = False
|
30 |
+
self.force_cpu = force_cpu
|
31 |
+
self.colab_performance = colab_performance
|
32 |
+
self.__check_encoders()
|
33 |
+
self.__check_providers()
|
34 |
+
self.total_mem = psutil.virtual_memory().total
|
35 |
+
self.__init_apps()
|
36 |
+
|
37 |
+
def __check_providers(self):
|
38 |
+
if self.force_cpu :
|
39 |
+
self.providers = ['CPUExecutionProvider']
|
40 |
+
else:
|
41 |
+
self.providers = rt.get_available_providers()
|
42 |
+
rt.set_default_logger_severity(4)
|
43 |
+
self.sess_options = rt.SessionOptions()
|
44 |
+
self.sess_options.execution_mode = rt.ExecutionMode.ORT_SEQUENTIAL
|
45 |
+
self.sess_options.graph_optimization_level = rt.GraphOptimizationLevel.ORT_ENABLE_ALL
|
46 |
+
|
47 |
+
if len(self.providers) == 1 and 'CPUExecutionProvider' in self.providers:
|
48 |
+
self.mode = RefacerMode.CPU
|
49 |
+
self.use_num_cpus = mp.cpu_count()-1
|
50 |
+
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
51 |
+
print(f"CPU mode with providers {self.providers}")
|
52 |
+
elif self.colab_performance:
|
53 |
+
self.mode = RefacerMode.TENSORRT
|
54 |
+
self.use_num_cpus = mp.cpu_count()-1
|
55 |
+
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
56 |
+
print(f"TENSORRT mode with providers {self.providers}")
|
57 |
+
elif 'CoreMLExecutionProvider' in self.providers:
|
58 |
+
self.mode = RefacerMode.COREML
|
59 |
+
self.use_num_cpus = mp.cpu_count()-1
|
60 |
+
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
61 |
+
print(f"CoreML mode with providers {self.providers}")
|
62 |
+
elif 'CUDAExecutionProvider' in self.providers:
|
63 |
+
self.mode = RefacerMode.CUDA
|
64 |
+
self.use_num_cpus = 2
|
65 |
+
self.sess_options.intra_op_num_threads = 1
|
66 |
+
if 'TensorrtExecutionProvider' in self.providers:
|
67 |
+
self.providers.remove('TensorrtExecutionProvider')
|
68 |
+
print(f"CUDA mode with providers {self.providers}")
|
69 |
+
"""
|
70 |
+
elif 'TensorrtExecutionProvider' in self.providers:
|
71 |
+
self.mode = RefacerMode.TENSORRT
|
72 |
+
#self.use_num_cpus = 1
|
73 |
+
#self.sess_options.intra_op_num_threads = 1
|
74 |
+
self.use_num_cpus = mp.cpu_count()-1
|
75 |
+
self.sess_options.intra_op_num_threads = int(self.use_num_cpus/3)
|
76 |
+
print(f"TENSORRT mode with providers {self.providers}")
|
77 |
+
"""
|
78 |
+
|
79 |
+
|
80 |
+
def __init_apps(self):
|
81 |
+
assets_dir = ensure_available('models', 'buffalo_l', root='~/.insightface')
|
82 |
+
|
83 |
+
model_path = os.path.join(assets_dir, 'det_10g.onnx')
|
84 |
+
sess_face = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
85 |
+
self.face_detector = SCRFD(model_path,sess_face)
|
86 |
+
self.face_detector.prepare(0,input_size=(640, 640))
|
87 |
+
|
88 |
+
model_path = os.path.join(assets_dir , 'w600k_r50.onnx')
|
89 |
+
sess_rec = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
90 |
+
self.rec_app = ArcFaceONNX(model_path,sess_rec)
|
91 |
+
self.rec_app.prepare(0)
|
92 |
+
|
93 |
+
model_path = 'inswapper_128.onnx'
|
94 |
+
sess_swap = rt.InferenceSession(model_path, self.sess_options, providers=self.providers)
|
95 |
+
self.face_swapper = INSwapper(model_path,sess_swap)
|
96 |
+
|
97 |
+
def prepare_faces(self, faces):
|
98 |
+
self.replacement_faces=[]
|
99 |
+
for face in faces:
|
100 |
+
#image1 = cv2.imread(face.origin)
|
101 |
+
if "origin" in face:
|
102 |
+
face_threshold = face['threshold']
|
103 |
+
bboxes1, kpss1 = self.face_detector.autodetect(face['origin'], max_num=1)
|
104 |
+
if len(kpss1)<1:
|
105 |
+
raise Exception('No face detected on "Face to replace" image')
|
106 |
+
feat_original = self.rec_app.get(face['origin'], kpss1[0])
|
107 |
+
else:
|
108 |
+
face_threshold = 0
|
109 |
+
self.first_face = True
|
110 |
+
feat_original = None
|
111 |
+
print('No origin image: First face change')
|
112 |
+
#image2 = cv2.imread(face.destination)
|
113 |
+
_faces = self.__get_faces(face['destination'],max_num=1)
|
114 |
+
if len(_faces)<1:
|
115 |
+
raise Exception('No face detected on "Destination face" image')
|
116 |
+
self.replacement_faces.append((feat_original,_faces[0],face_threshold))
|
117 |
+
|
118 |
+
def __convert_video(self,video_path,output_video_path):
|
119 |
+
if self.video_has_audio:
|
120 |
+
print("Merging audio with the refaced video...")
|
121 |
+
new_path = output_video_path + str(random.randint(0,999)) + "_c.mp4"
|
122 |
+
#stream = ffmpeg.input(output_video_path)
|
123 |
+
in1 = ffmpeg.input(output_video_path)
|
124 |
+
in2 = ffmpeg.input(video_path)
|
125 |
+
out = ffmpeg.output(in1.video, in2.audio, new_path,video_bitrate=self.ffmpeg_video_bitrate,vcodec=self.ffmpeg_video_encoder)
|
126 |
+
out.run(overwrite_output=True,quiet=True)
|
127 |
+
else:
|
128 |
+
new_path = output_video_path
|
129 |
+
print("The video doesn't have audio, so post-processing is not necessary")
|
130 |
+
|
131 |
+
print(f"The process has finished.\nThe refaced video can be found at {os.path.abspath(new_path)}")
|
132 |
+
return new_path
|
133 |
+
|
134 |
+
def __get_faces(self,frame,max_num=0):
|
135 |
+
|
136 |
+
bboxes, kpss = self.face_detector.detect(frame,max_num=max_num,metric='default')
|
137 |
+
|
138 |
+
if bboxes.shape[0] == 0:
|
139 |
+
return []
|
140 |
+
ret = []
|
141 |
+
for i in range(bboxes.shape[0]):
|
142 |
+
bbox = bboxes[i, 0:4]
|
143 |
+
det_score = bboxes[i, 4]
|
144 |
+
kps = None
|
145 |
+
if kpss is not None:
|
146 |
+
kps = kpss[i]
|
147 |
+
face = Face(bbox=bbox, kps=kps, det_score=det_score)
|
148 |
+
face.embedding = self.rec_app.get(frame, kps)
|
149 |
+
ret.append(face)
|
150 |
+
return ret
|
151 |
+
|
152 |
+
def process_first_face(self,frame):
|
153 |
+
faces = self.__get_faces(frame,max_num=1)
|
154 |
+
if len(faces) != 0:
|
155 |
+
frame = self.face_swapper.get(frame, faces[0], self.replacement_faces[0][1], paste_back=True)
|
156 |
+
return frame
|
157 |
+
|
158 |
+
def process_faces(self,frame):
|
159 |
+
faces = self.__get_faces(frame,max_num=0)
|
160 |
+
for rep_face in self.replacement_faces:
|
161 |
+
for i in range(len(faces) - 1, -1, -1):
|
162 |
+
sim = self.rec_app.compute_sim(rep_face[0], faces[i].embedding)
|
163 |
+
if sim>=rep_face[2]:
|
164 |
+
frame = self.face_swapper.get(frame, faces[i], rep_face[1], paste_back=True)
|
165 |
+
del faces[i]
|
166 |
+
break
|
167 |
+
return frame
|
168 |
+
|
169 |
+
def __check_video_has_audio(self,video_path):
|
170 |
+
self.video_has_audio = False
|
171 |
+
probe = ffmpeg.probe(video_path)
|
172 |
+
audio_stream = next((stream for stream in probe['streams'] if stream['codec_type'] == 'audio'), None)
|
173 |
+
if audio_stream is not None:
|
174 |
+
self.video_has_audio = True
|
175 |
+
|
176 |
+
def reface_group(self, faces, frames, output):
|
177 |
+
with ThreadPoolExecutor(max_workers = self.use_num_cpus) as executor:
|
178 |
+
if self.first_face:
|
179 |
+
results = list(tqdm(executor.map(self.process_first_face, frames), total=len(frames),desc="Processing frames"))
|
180 |
+
else:
|
181 |
+
results = list(tqdm(executor.map(self.process_faces, frames), total=len(frames),desc="Processing frames"))
|
182 |
+
for result in results:
|
183 |
+
output.write(result)
|
184 |
+
|
185 |
+
def reface(self, video_path, faces):
|
186 |
+
self.__check_video_has_audio(video_path)
|
187 |
+
output_video_path = os.path.join('out',Path(video_path).name)
|
188 |
+
self.prepare_faces(faces)
|
189 |
+
|
190 |
+
cap = cv2.VideoCapture(video_path)
|
191 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
192 |
+
print(f"Total frames: {total_frames}")
|
193 |
+
|
194 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
195 |
+
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
196 |
+
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
197 |
+
|
198 |
+
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
199 |
+
output = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))
|
200 |
+
|
201 |
+
frames=[]
|
202 |
+
self.k = 1
|
203 |
+
with tqdm(total=total_frames,desc="Extracting frames") as pbar:
|
204 |
+
while cap.isOpened():
|
205 |
+
flag, frame = cap.read()
|
206 |
+
if flag and len(frame)>0:
|
207 |
+
frames.append(frame.copy())
|
208 |
+
pbar.update()
|
209 |
+
else:
|
210 |
+
break
|
211 |
+
if (len(frames) > 1000):
|
212 |
+
self.reface_group(faces,frames,output)
|
213 |
+
frames=[]
|
214 |
+
|
215 |
+
cap.release()
|
216 |
+
pbar.close()
|
217 |
+
|
218 |
+
self.reface_group(faces,frames,output)
|
219 |
+
frames=[]
|
220 |
+
output.release()
|
221 |
+
|
222 |
+
return self.__convert_video(video_path,output_video_path)
|
223 |
+
|
224 |
+
def __try_ffmpeg_encoder(self, vcodec):
|
225 |
+
print(f"Trying FFMPEG {vcodec} encoder")
|
226 |
+
command = ['ffmpeg', '-y', '-f','lavfi','-i','testsrc=duration=1:size=1280x720:rate=30','-vcodec',vcodec,'testsrc.mp4']
|
227 |
+
try:
|
228 |
+
subprocess.run(command, check=True, capture_output=True).stderr
|
229 |
+
except subprocess.CalledProcessError as e:
|
230 |
+
print(f"FFMPEG {vcodec} encoder doesn't work -> Disabled.")
|
231 |
+
return False
|
232 |
+
print(f"FFMPEG {vcodec} encoder works")
|
233 |
+
return True
|
234 |
+
|
235 |
+
def __check_encoders(self):
|
236 |
+
self.ffmpeg_video_encoder='libx264'
|
237 |
+
self.ffmpeg_video_bitrate='0'
|
238 |
+
|
239 |
+
pattern = r"encoders: ([a-zA-Z0-9_]+(?: [a-zA-Z0-9_]+)*)"
|
240 |
+
command = ['ffmpeg', '-codecs', '--list-encoders']
|
241 |
+
commandout = subprocess.run(command, check=True, capture_output=True).stdout
|
242 |
+
result = commandout.decode('utf-8').split('\n')
|
243 |
+
for r in result:
|
244 |
+
if "264" in r:
|
245 |
+
encoders = re.search(pattern, r).group(1).split(' ')
|
246 |
+
for v_c in Refacer.VIDEO_CODECS:
|
247 |
+
for v_k in encoders:
|
248 |
+
if v_c == v_k:
|
249 |
+
if self.__try_ffmpeg_encoder(v_k):
|
250 |
+
self.ffmpeg_video_encoder=v_k
|
251 |
+
self.ffmpeg_video_bitrate=Refacer.VIDEO_CODECS[v_k]
|
252 |
+
print(f"Video codec for FFMPEG: {self.ffmpeg_video_encoder}")
|
253 |
+
return
|
254 |
+
|
255 |
+
VIDEO_CODECS = {
|
256 |
+
'h264_videotoolbox':'0', #osx HW acceleration
|
257 |
+
'h264_nvenc':'0', #NVIDIA HW acceleration
|
258 |
+
#'h264_qsv', #Intel HW acceleration
|
259 |
+
#'h264_vaapi', #Intel HW acceleration
|
260 |
+
#'h264_omx', #HW acceleration
|
261 |
+
'libx264':'0' #No HW acceleration
|
262 |
+
}
|
requirements-COREML.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg_python==0.2.0
|
2 |
+
gradio==3.33.1
|
3 |
+
insightface==0.7.3
|
4 |
+
numpy==1.24.3
|
5 |
+
onnx==1.14.0
|
6 |
+
onnxruntime-silicon
|
7 |
+
opencv_python==4.7.0.72
|
8 |
+
opencv_python_headless==4.7.0.72
|
9 |
+
scikit-image==0.20.0
|
10 |
+
tqdm
|
11 |
+
psutil
|
12 |
+
ngrok
|
requirements-GPU.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg_python==0.2.0
|
2 |
+
gradio==3.33.1
|
3 |
+
insightface==0.7.3
|
4 |
+
numpy==1.24.3
|
5 |
+
onnx==1.14.0
|
6 |
+
onnxruntime_gpu==1.15.0
|
7 |
+
opencv_python==4.7.0.72
|
8 |
+
opencv_python_headless==4.7.0.72
|
9 |
+
scikit-image==0.20.0
|
10 |
+
tqdm
|
11 |
+
psutil
|
12 |
+
ngrok
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
ffmpeg_python==0.2.0
|
2 |
+
gradio==3.33.1
|
3 |
+
insightface==0.7.3
|
4 |
+
numpy==1.24.3
|
5 |
+
onnx==1.14.0
|
6 |
+
onnxruntime==1.15.0
|
7 |
+
opencv_python==4.7.0.72
|
8 |
+
opencv_python_headless==4.7.0.72
|
9 |
+
scikit-image==0.20.0
|
10 |
+
tqdm
|
11 |
+
psutil
|
12 |
+
ngrok
|
script.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from refacer import Refacer
|
2 |
+
from os.path import exists
|
3 |
+
import argparse
|
4 |
+
import cv2
|
5 |
+
|
6 |
+
parser = argparse.ArgumentParser(description='Refacer')
|
7 |
+
parser.add_argument("--force_cpu", help="Force CPU mode", default=False, action="store_true")
|
8 |
+
parser.add_argument("--colab_performance", help="Use in colab for better performance", default=False,action="store_true")
|
9 |
+
parser.add_argument("--face", help="Face to replace (ex: <src>,<dst>,<thresh=0.2>)", nargs='+', action="append", required=True)
|
10 |
+
parser.add_argument("--video", help="Video to parse", required=True)
|
11 |
+
args = parser.parse_args()
|
12 |
+
|
13 |
+
refacer = Refacer(force_cpu=args.force_cpu,colab_performance=args.colab_performance)
|
14 |
+
|
15 |
+
def run(video_path,faces):
|
16 |
+
video_path_exists = exists(video_path)
|
17 |
+
if video_path_exists == False:
|
18 |
+
print ("Can't find " + video_path)
|
19 |
+
return
|
20 |
+
|
21 |
+
faces_out = []
|
22 |
+
for face in faces:
|
23 |
+
face_str = face[0].split(",")
|
24 |
+
origin = exists(face_str[0])
|
25 |
+
if origin == False:
|
26 |
+
print ("Can't find " + face_str[0])
|
27 |
+
return
|
28 |
+
destination = exists(face_str[1])
|
29 |
+
if destination == False:
|
30 |
+
print ("Can't find " + face_str[1])
|
31 |
+
return
|
32 |
+
|
33 |
+
faces_out.append({
|
34 |
+
'origin':cv2.imread(face_str[0]),
|
35 |
+
'destination':cv2.imread(face_str[1]),
|
36 |
+
'threshold':float(face_str[2])
|
37 |
+
})
|
38 |
+
|
39 |
+
return refacer.reface(video_path,faces_out)
|
40 |
+
|
41 |
+
run(args.video, args.face)
|