import os import cv2 import torch import gfpgan from PIL import Image from upscaler.RealESRGAN import RealESRGAN from upscaler.codeformer import CodeFormerEnhancer def gfpgan_runner(img, model): _, imgs, _ = model.enhance(img, paste_back=True, has_aligned=True) return imgs[0] def realesrgan_runner(img, model): img = model.predict(img) return img def realhatgan_runner(img, model): img = model.predict(img) return img def restoreformer_runner(img, model): img = model.predict(img) return img def ultrasharp_runner(img, model): img = model.predict(img) return img def codeformer_runner(img, model): img = model.enhance(img) return img supported_enhancers = { "CodeFormer": ("./assets/pretrained_models/codeformer.onnx", codeformer_runner), "GFPGAN": ("./assets/pretrained_models/GFPGANv1.4.pth", gfpgan_runner), "Real_Hatgan x4": ("./assets/pretrained_models/real_hatgan_x4.onnx", realhatgan_runner), "Ultra_Sharp x4": ("./assets/pretrained_models/ultra_sharp_x4.onnx", ultrasharp_runner), "RestoreFormer": ("./assets/pretrained_models/restoreformer_plus_plus.onnx", restoreformer_runner), "REAL-ESRGAN 2x": ("./assets/pretrained_models/RealESRGAN_x2.pth", realesrgan_runner), "REAL-ESRGAN 4x": ("./assets/pretrained_models/RealESRGAN_x4.pth", realesrgan_runner), "REAL-ESRGAN 8x": ("./assets/pretrained_models/RealESRGAN_x8.pth", realesrgan_runner) } cv2_interpolations = ["LANCZOS4", "CUBIC", "NEAREST"] def get_available_enhancer_names(): available = [] for name, data in supported_enhancers.items(): path = os.path.join(os.path.abspath(os.path.dirname(__file__)), data[0]) if os.path.exists(path): available.append(name) return available def load_face_enhancer_model(name='GFPGAN', device="cpu"): assert name in get_available_enhancer_names() + cv2_interpolations, f"Face enhancer {name} unavailable." if name in supported_enhancers.keys(): model_path, model_runner = supported_enhancers.get(name) model_path = os.path.join(os.path.abspath(os.path.dirname(__file__)), model_path) if name == 'CodeFormer': model = CodeFormerEnhancer(model_path=model_path, device=device) elif name == 'GFPGAN': model = gfpgan.GFPGANer(model_path=model_path, upscale=1, device=device) elif name =='RestoreFormer': model = RestoreFormer(device, scale=1) model.load_weights(model_path, download=False) elif name == 'REAL-ESRGAN 4x': model = RealESRGAN(device, scale=4) model.load_weights(model_path, download=False) elif name == 'REAL-ESRGAN 2x': model = RealESRGAN(device, scale=2) model.load_weights(model_path, download=False) elif name == 'Real_Hatgan x4': model = RealHatGAN(device, scale=4) elif name == 'Ultra_Sharp x4': model = UltraShap(device, scale=4) model.load_weights(model_path, download=False) elif name == 'REAL-ESRGAN 4x': model = RealHatGAN(device, scale=4) model.load_weights(model_path, download=False) elif name == 'REAL-ESRGAN 8x': model = RealESRGAN(device, scale=8) model.load_weights(model_path, download=False) elif name == 'LANCZOS4': model = None model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_LANCZOS4) elif name == 'CUBIC': model = None model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_CUBIC) elif name == 'NEAREST': model = None model_runner = lambda img, _: cv2.resize(img, (512,512), interpolation=cv2.INTER_NEAREST) else: model = None return (model, model_runner)