Spaces:
Running
Running
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import torchvision.transforms as transforms | |
import cv2 | |
import numpy as np | |
from .model import BiSeNet | |
mask_regions = { | |
"Background":0, | |
"Skin":1, | |
"L-Eyebrow":2, | |
"R-Eyebrow":3, | |
"L-Eye":4, | |
"R-Eye":5, | |
"Eye-G":6, | |
"L-Ear":7, | |
"R-Ear":8, | |
"Ear-R":9, | |
"Nose":10, | |
"Mouth":11, | |
"U-Lip":12, | |
"L-Lip":13, | |
"Neck":14, | |
"Neck-L":15, | |
"Cloth":16, | |
"Hair":17, | |
"Hat":18 | |
} | |
# Borrowed from simswap | |
# https://github.com/neuralchen/SimSwap/blob/26c84d2901bd56eda4d5e3c5ca6da16e65dc82a6/util/reverse2original.py#L30 | |
class SoftErosion(nn.Module): | |
def __init__(self, kernel_size=15, threshold=0.6, iterations=1): | |
super(SoftErosion, self).__init__() | |
r = kernel_size // 2 | |
self.padding = r | |
self.iterations = iterations | |
self.threshold = threshold | |
# Create kernel | |
y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size)) | |
dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2) | |
kernel = dist.max() - dist | |
kernel /= kernel.sum() | |
kernel = kernel.view(1, 1, *kernel.shape) | |
self.register_buffer('weight', kernel) | |
def forward(self, x): | |
x = x.float() | |
for i in range(self.iterations - 1): | |
x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)) | |
x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding) | |
mask = x >= self.threshold | |
x[mask] = 1.0 | |
x[~mask] /= x[~mask].max() | |
return x, mask | |
device = "cpu" | |
def init_parser(pth_path, mode="cpu"): | |
global device | |
device = mode | |
n_classes = 19 | |
net = BiSeNet(n_classes=n_classes) | |
if device == "cuda": | |
net.cuda() | |
net.load_state_dict(torch.load(pth_path)) | |
else: | |
net.load_state_dict(torch.load(pth_path, map_location=torch.device('cpu'))) | |
net.eval() | |
return net | |
def image_to_parsing(img, net): | |
img = cv2.resize(img, (512, 512)) | |
img = img[:,:,::-1] | |
transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)) | |
]) | |
img = transform(img.copy()) | |
img = torch.unsqueeze(img, 0) | |
with torch.no_grad(): | |
img = img.to(device) | |
out = net(img)[0] | |
parsing = out.squeeze(0).cpu().numpy().argmax(0) | |
return parsing | |
def get_mask(parsing, classes): | |
res = parsing == classes[0] | |
for val in classes[1:]: | |
res += parsing == val | |
return res | |
def swap_regions(source, target, net, smooth_mask, includes=[1,2,3,4,5,10,11,12,13], blur=10): | |
parsing = image_to_parsing(source, net) | |
if len(includes) == 0: | |
return source, np.zeros_like(source) | |
include_mask = get_mask(parsing, includes) | |
mask = np.repeat(include_mask[:, :, np.newaxis], 3, axis=2).astype("float32") | |
if smooth_mask is not None: | |
mask_tensor = torch.from_numpy(mask.copy().transpose((2, 0, 1))).float().to(device) | |
face_mask_tensor = mask_tensor[0] + mask_tensor[1] | |
soft_face_mask_tensor, _ = smooth_mask(face_mask_tensor.unsqueeze_(0).unsqueeze_(0)) | |
soft_face_mask_tensor.squeeze_() | |
mask = np.repeat(soft_face_mask_tensor.cpu().numpy()[:, :, np.newaxis], 3, axis=2) | |
if blur > 0: | |
mask = cv2.GaussianBlur(mask, (0, 0), blur) | |
resized_source = cv2.resize((source/255).astype("float32"), (512, 512)) | |
resized_target = cv2.resize((target/255).astype("float32"), (512, 512)) | |
result = mask * resized_source + (1 - mask) * resized_target | |
normalized_result = (result - np.min(result)) / (np.max(result) - np.min(result)) | |
result = cv2.resize((result*255).astype("uint8"), (source.shape[1], source.shape[0])) | |
return result | |
def mask_regions_to_list(values): | |
out_ids = [] | |
for value in values: | |
if value in mask_regions.keys(): | |
out_ids.append(mask_regions.get(value)) | |
return out_ids | |