Spaces:
Sleeping
Sleeping
mini-omni
commited on
Commit
·
2541285
1
Parent(s):
e37ec4f
fix device
Browse files- .gitignore +1 -0
- inference.py +1 -1
- utils/snac_utils.py +13 -10
.gitignore
CHANGED
@@ -4,6 +4,7 @@
|
|
4 |
checkpoint/
|
5 |
checkpoint_bak/
|
6 |
output/
|
|
|
7 |
|
8 |
__pycache__/
|
9 |
*.py[cod]
|
|
|
4 |
checkpoint/
|
5 |
checkpoint_bak/
|
6 |
output/
|
7 |
+
.DS_Store
|
8 |
|
9 |
__pycache__/
|
10 |
*.py[cod]
|
inference.py
CHANGED
@@ -494,7 +494,7 @@ class OmniInference:
|
|
494 |
if current_index == nums_generate:
|
495 |
current_index = 0
|
496 |
snac = get_snac(list_output, index, nums_generate)
|
497 |
-
audio_stream = generate_audio_data(snac, self.snacmodel)
|
498 |
yield audio_stream
|
499 |
|
500 |
input_pos = input_pos.add_(1)
|
|
|
494 |
if current_index == nums_generate:
|
495 |
current_index = 0
|
496 |
snac = get_snac(list_output, index, nums_generate)
|
497 |
+
audio_stream = generate_audio_data(snac, self.snacmodel, self.device)
|
498 |
yield audio_stream
|
499 |
|
500 |
input_pos = input_pos.add_(1)
|
utils/snac_utils.py
CHANGED
@@ -21,8 +21,8 @@ def layershift(input_id, layer, stride=4160, shift=152000):
|
|
21 |
return input_id + shift + layer * stride
|
22 |
|
23 |
|
24 |
-
def generate_audio_data(snac_tokens, snacmodel):
|
25 |
-
audio = reconstruct_tensors(snac_tokens)
|
26 |
with torch.inference_mode():
|
27 |
audio_hat = snacmodel.decode(audio)
|
28 |
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
@@ -55,9 +55,12 @@ def reconscruct_snac(output_list):
|
|
55 |
return output
|
56 |
|
57 |
|
58 |
-
def reconstruct_tensors(flattened_output):
|
59 |
"""Reconstructs the list of tensors from the flattened output."""
|
60 |
|
|
|
|
|
|
|
61 |
def count_elements_between_hashes(lst):
|
62 |
try:
|
63 |
# Find the index of the first '#'
|
@@ -107,9 +110,9 @@ def reconstruct_tensors(flattened_output):
|
|
107 |
tensor3.append(flattened_output[i + 6])
|
108 |
tensor3.append(flattened_output[i + 7])
|
109 |
codes = [
|
110 |
-
list_to_torch_tensor(tensor1).
|
111 |
-
list_to_torch_tensor(tensor2).
|
112 |
-
list_to_torch_tensor(tensor3).
|
113 |
]
|
114 |
|
115 |
if n_tensors == 15:
|
@@ -133,10 +136,10 @@ def reconstruct_tensors(flattened_output):
|
|
133 |
tensor4.append(flattened_output[i + 15])
|
134 |
|
135 |
codes = [
|
136 |
-
list_to_torch_tensor(tensor1).
|
137 |
-
list_to_torch_tensor(tensor2).
|
138 |
-
list_to_torch_tensor(tensor3).
|
139 |
-
list_to_torch_tensor(tensor4).
|
140 |
]
|
141 |
|
142 |
return codes
|
|
|
21 |
return input_id + shift + layer * stride
|
22 |
|
23 |
|
24 |
+
def generate_audio_data(snac_tokens, snacmodel, device=None):
|
25 |
+
audio = reconstruct_tensors(snac_tokens, device)
|
26 |
with torch.inference_mode():
|
27 |
audio_hat = snacmodel.decode(audio)
|
28 |
audio_data = audio_hat.cpu().numpy().astype(np.float64) * 32768.0
|
|
|
55 |
return output
|
56 |
|
57 |
|
58 |
+
def reconstruct_tensors(flattened_output, device=None):
|
59 |
"""Reconstructs the list of tensors from the flattened output."""
|
60 |
|
61 |
+
if device is None:
|
62 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
63 |
+
|
64 |
def count_elements_between_hashes(lst):
|
65 |
try:
|
66 |
# Find the index of the first '#'
|
|
|
110 |
tensor3.append(flattened_output[i + 6])
|
111 |
tensor3.append(flattened_output[i + 7])
|
112 |
codes = [
|
113 |
+
list_to_torch_tensor(tensor1).to(device),
|
114 |
+
list_to_torch_tensor(tensor2).to(device),
|
115 |
+
list_to_torch_tensor(tensor3).to(device),
|
116 |
]
|
117 |
|
118 |
if n_tensors == 15:
|
|
|
136 |
tensor4.append(flattened_output[i + 15])
|
137 |
|
138 |
codes = [
|
139 |
+
list_to_torch_tensor(tensor1).to(device),
|
140 |
+
list_to_torch_tensor(tensor2).to(device),
|
141 |
+
list_to_torch_tensor(tensor3).to(device),
|
142 |
+
list_to_torch_tensor(tensor4).to(device),
|
143 |
]
|
144 |
|
145 |
return codes
|