from io import BytesIO import streamlit as st from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import Chroma from langchain_openai import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain def extract_text_from_pdf(pdf_file_obj): pdf_reader = PdfReader(BytesIO(pdf_file_obj.getbuffer())) text = "" for page_num in range(len(pdf_reader.pages)): page_obj = pdf_reader.pages[page_num] text += page_obj.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter( separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): metadatas = [{"source": f"{i}-pl"} for i in range(len(text_chunks))] embeddings = OpenAIEmbeddings() vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore): llm = ChatOpenAI() memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.markdown(("User: "+message.content)) else: st.markdown(("AI: "+message.content)) def main(): load_dotenv() if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None if st.session_state.conversation is not None: st.header("Ask questions from your PDF:books:") user_question = st.chat_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) if st.session_state.conversation is None: st.header("Upload your PDF here") pdf_doc = st.file_uploader("Browse your file here",type="pdf") if pdf_doc is not None: with st.spinner("Processing"): # get pdf text raw_text = extract_text_from_pdf(pdf_doc) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) st.rerun() if __name__ == '__main__': main()