Spaces:
Sleeping
Sleeping
viboognesh
commited on
Commit
•
a8a91b0
1
Parent(s):
e12b281
Upload 2 files
Browse files- app.py +118 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
import streamlit as st
|
3 |
+
import requests
|
4 |
+
import os
|
5 |
+
from PyPDF2 import PdfReader
|
6 |
+
from langchain.text_splitter import CharacterTextSplitter
|
7 |
+
from langchain_openai import OpenAIEmbeddings
|
8 |
+
from langchain_community.vectorstores import Chroma
|
9 |
+
from langchain_openai import ChatOpenAI
|
10 |
+
from langchain.memory import ConversationBufferMemory
|
11 |
+
from langchain.chains import ConversationalRetrievalChain
|
12 |
+
|
13 |
+
def getpdfdoc():
|
14 |
+
with st.spinner("Loading PDF..."):
|
15 |
+
filename = '48lawsofpower.pdf'
|
16 |
+
if os.path.exists(filename):
|
17 |
+
with open(filename, 'rb') as f:
|
18 |
+
pdf_doc = f.read()
|
19 |
+
return pdf_doc
|
20 |
+
else:
|
21 |
+
url = 'https://pgcag.files.wordpress.com/2010/01/48lawsofpower.pdf'
|
22 |
+
response = requests.get(url)
|
23 |
+
|
24 |
+
with open(filename, 'wb') as f:
|
25 |
+
f.write(response.content)
|
26 |
+
|
27 |
+
return getpdfdoc()
|
28 |
+
|
29 |
+
|
30 |
+
def extract_text_from_pdf(pdf_file_obj):
|
31 |
+
with st.spinner("Extracting text from PDF..."):
|
32 |
+
pdf_reader = PdfReader(BytesIO(pdf_file_obj))
|
33 |
+
text = ""
|
34 |
+
for page_num in range(len(pdf_reader.pages)):
|
35 |
+
page_obj = pdf_reader.pages[page_num]
|
36 |
+
text += page_obj.extract_text()
|
37 |
+
return text
|
38 |
+
|
39 |
+
def get_text_chunks(text):
|
40 |
+
with st.spinner("Splitting text into chunks..."):
|
41 |
+
text_splitter = CharacterTextSplitter(
|
42 |
+
separator="\n",
|
43 |
+
chunk_size=1000,
|
44 |
+
chunk_overlap=200,
|
45 |
+
length_function=len
|
46 |
+
)
|
47 |
+
chunks = text_splitter.split_text(text)
|
48 |
+
return chunks
|
49 |
+
|
50 |
+
|
51 |
+
def get_vectorstore(text_chunks):
|
52 |
+
with st.spinner("Creating vectorstore..."):
|
53 |
+
metadatas = [{"source": f"{i}-pl"} for i in range(len(text_chunks))]
|
54 |
+
embeddings = OpenAIEmbeddings()
|
55 |
+
vectorstore = Chroma.from_texts(texts=text_chunks, embedding=embeddings, persist_directory="./chroma_db", metadatas=metadatas)
|
56 |
+
return vectorstore
|
57 |
+
|
58 |
+
def get_conversation_chain(vectorstore):
|
59 |
+
with st.spinner("Loading LLM..."):
|
60 |
+
llm = ChatOpenAI()
|
61 |
+
|
62 |
+
memory = ConversationBufferMemory(
|
63 |
+
memory_key='chat_history', return_messages=True)
|
64 |
+
conversation_chain = ConversationalRetrievalChain.from_llm(
|
65 |
+
llm=llm,
|
66 |
+
retriever=vectorstore.as_retriever(),
|
67 |
+
memory=memory
|
68 |
+
)
|
69 |
+
return conversation_chain
|
70 |
+
|
71 |
+
|
72 |
+
def handle_userinput(user_question):
|
73 |
+
response = st.session_state.conversation({'question': user_question})
|
74 |
+
st.session_state.chat_history = response['chat_history']
|
75 |
+
|
76 |
+
for i, message in enumerate(st.session_state.chat_history):
|
77 |
+
if i % 2 == 0:
|
78 |
+
st.markdown(("User: "+message.content))
|
79 |
+
else:
|
80 |
+
st.markdown(("AI: "+message.content))
|
81 |
+
|
82 |
+
|
83 |
+
def main():
|
84 |
+
if "conversation" not in st.session_state:
|
85 |
+
st.session_state.conversation = None
|
86 |
+
if "chat_history" not in st.session_state:
|
87 |
+
st.session_state.chat_history = None
|
88 |
+
|
89 |
+
if st.session_state.conversation is None:
|
90 |
+
if os.path.isdir("./chroma_db"):
|
91 |
+
if os.listdir("./chroma_db"):
|
92 |
+
with st.spinner("Loading vector store..."):
|
93 |
+
vectorstore = Chroma(persist_directory="./chroma_db", embedding_function=OpenAIEmbeddings())
|
94 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
95 |
+
|
96 |
+
if st.session_state.conversation is None:
|
97 |
+
pdf_doc = getpdfdoc()
|
98 |
+
|
99 |
+
# get pdf text
|
100 |
+
raw_text = extract_text_from_pdf(pdf_doc)
|
101 |
+
|
102 |
+
# get the text chunks
|
103 |
+
text_chunks = get_text_chunks(raw_text)
|
104 |
+
|
105 |
+
# create vector store
|
106 |
+
vectorstore = get_vectorstore(text_chunks)
|
107 |
+
|
108 |
+
# create conversation chain
|
109 |
+
st.session_state.conversation = get_conversation_chain(vectorstore)
|
110 |
+
|
111 |
+
if st.session_state.conversation is not None:
|
112 |
+
st.header("Ask questions from 48 Laws of Power:books:")
|
113 |
+
user_question = st.chat_input("Ask a question about your documents:")
|
114 |
+
if user_question:
|
115 |
+
handle_userinput(user_question)
|
116 |
+
|
117 |
+
if __name__ == '__main__':
|
118 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
langchain
|
2 |
+
langchain-community
|
3 |
+
langchain-openai
|
4 |
+
pypdf2
|
5 |
+
chromadb
|
6 |
+
streamlit
|