Spaces:
Runtime error
Runtime error
# Core Pkgs | |
import streamlit as st | |
from function import * | |
# EDA Pkgs | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from wordcloud import WordCloud | |
# Utils | |
from datetime import datetime | |
warnings.filterwarnings("ignore") | |
# page info setup | |
menu_items = { | |
'Get help':'https://https://www.linkedin.com/in/ayomide-ishola-924014162/' , | |
'Report a bug': 'https://www.linkedin.com/in/ayomide-ishola-924014162/', | |
'About': ''' | |
## My Custom App | |
Some markdown to show in the About dialog. | |
''' | |
} | |
#page configuration | |
st.set_page_config(page_title="Article Summariser", page_icon="./favicon/favicon.ico",menu_items=menu_items) | |
st.set_option('deprecation.showPyplotGlobalUse', False) | |
def main(): | |
# This is used to hide the made with streamlit watermark | |
hide_streamlit_style = """ | |
<style> | |
footer {visibility: hidden;} | |
</style> | |
""" | |
st.markdown(hide_streamlit_style, unsafe_allow_html=True) | |
# Article Summariser heading | |
st.markdown("<h1 style = 'color:green; align:center; font-size: 40px;'> Article Summariser</h1>", unsafe_allow_html=True) | |
# control for Model Settings | |
st.sidebar.markdown("<h4 style = 'color:green; align:center; font-size: 20px;'> Model Settings</h1>", unsafe_allow_html=True) | |
max_length= st.sidebar.slider("Maximum length of the generated text",min_value=100,max_value=500) | |
min_length= st.sidebar.slider("Minimum length of the generated text",min_value=30) | |
model_type = st.sidebar.selectbox("Model type", options=["Bart","T5", "Bart + T5"]) | |
# This function is used to upload a .txt, .pdf, .docx file for summarization | |
upload_doc = st.file_uploader("Upload a .txt, .pdf, .docx file for summarisation") | |
st.markdown("<h3 style='text-align: center; color: green;'>or</h3>",unsafe_allow_html=True) | |
#This function is used to Type your Message (text area) | |
plain_text = st.text_area("Type your text below",height=200) | |
# this is used to control the logic of the code | |
if upload_doc: | |
clean_text = preprocess_plain_text(extract_text_from_file(upload_doc)) | |
else: | |
clean_text = preprocess_plain_text(plain_text) | |
summarize = st.button("Summarise") | |
# called on toggle button [summarize] | |
if summarize: | |
if model_type == "Bart": | |
text_to_summarize = clean_text | |
with st.spinner( | |
text="Loading Bart Model and Extracting summary. This might take a few seconds depending on the length of your text..."): | |
summarizer_model = bart() | |
summarized_text = summarizer_model(text_to_summarize, max_length=max_length ,min_length=min_length) | |
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) | |
elif model_type == "T5": | |
text_to_summarize = clean_text | |
with st.spinner( | |
text="Loading T5 Model and Extracting summary. This might take a few seconds depending on the length of your text..."): | |
summarizer_model = t5() | |
summarized_text = summarizer_model(text_to_summarize, max_length=max_length, min_length=min_length) | |
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) | |
elif model_type == "Bart + T5": | |
text_to_summarize = clean_text | |
with st.spinner( | |
text="Loading Bart + T5 Models and Extracting summary. This might take a few seconds depending on the length of your text..."): | |
summarizer_model = bart_t5() | |
summarized_text = summarizer_model(text_to_summarize, max_length=max_length, min_length=min_length) | |
summarized_text = ' '.join([summ['summary_text'] for summ in summarized_text]) | |
res_col1 ,res_col2 = st.columns(2) | |
with res_col1: | |
st.subheader("Generated Text Visualisation") | |
# Create and generate a word cloud image: | |
wordcloud = WordCloud().generate(summarized_text) | |
# Display the generated image: | |
plt.imshow(wordcloud, interpolation='bilinear') | |
plt.axis("off") | |
plt.show() | |
st.pyplot() | |
summary_downloader(summarized_text) | |
with res_col2: | |
st.subheader("Summarised Text Output") | |
st.success("Summarised Text") | |
st.write(summarized_text) | |
if __name__ == '__main__': | |
main() |