Spaces:
Runtime error
Runtime error
File size: 5,348 Bytes
743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 2225e5e 2d0d0c7 743fd42 2d0d0c7 2225e5e 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 743fd42 2d0d0c7 2225e5e 743fd42 2d0d0c7 743fd42 2d0d0c7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
from datasets import load_dataset, interleave_datasets
from modules.module_segmentedWordCloud import SegmentedWordCloud
from modules.module_customSubsetsLabel import CustomSubsetsLabel
from random import sample as random_sample
from typing import Tuple, List, Dict
import re
import matplotlib as mpl
mpl.use('Agg')
import matplotlib.pyplot as plt
class Word2Context:
def __init__(
self,
context_ds_name: str,
vocabulary # Vocabulary class instance
) -> None:
self.context_ds_name = context_ds_name
# Vocabulary class
self.vocab = vocabulary
# Custom Label component
self.Label = CustomSubsetsLabel()
def errorChecking(
self,
word: str
) -> str:
out_msj = ""
if not word:
out_msj = "Error: Primero debe ingresar una palabra!"
else:
if word not in self.vocab:
out_msj = f"Error: La palabra '<b>{word}</b>' no se encuentra en el vocabulario!"
return out_msj
def genWebLink(
self,
text: str
) -> str:
text = text.replace("\"", "'")
text = text.replace("<u><b>", "")
text = text.replace("</b></u>", "")
url = "https://www.google.com.tr/search?q={}".format(text)
return '<a href="{}" rel="noopener noreferrer" target="_blank"><center>ππ</center></a>'.format(url)
def genWordCloudPlot(
self,
word: str,
figsize: Tuple[int,int]=(9,3)
) -> plt.Figure:
freq_dic, l_group, g_group = self.vocab.getWordNeighbors(word, n_neighbors=10)
wc = SegmentedWordCloud(freq_dic, l_group, g_group)
return wc.plot(figsize)
def genDistributionPlot(
self,
word: str,
figsize: Tuple[int,int]=(6,1)
) -> plt.Figure:
x_values, y_values = self.vocab.distribution()
w_percentile = self.vocab.getPercentile(word)
w_freq = self.vocab.getFreq(word)
fig, ax = plt.subplots(figsize=figsize)
ax.plot(x_values, y_values, color='green')
ax.fill_between(x_values, y_values, color='lightgreen',)
ax.axvline(x=max(0,w_percentile-.01),
color='blue',
linewidth=7,
alpha=.1,
linestyle='-'
)
ax.axvline(x=min(100,w_percentile+.01),
color='black',
linewidth=7,
alpha=.1,
linestyle='-'
)
ax.axvline(x=w_percentile,
color='#d35400',
linewidth=2,
linestyle='--',
label=f'{w_freq}\n(frecuencia total)'
)
ax.axis('off')
plt.legend(loc='upper left', prop={'size': 7})
return fig
def findSplits(
self,
word: str,
subsets_list: List[str]
):
w_splits = self.vocab.getSplits(word)
splits_list = []
for subset in subsets_list:
current_split_list = []
for s in w_splits:
if (subset == s.split("_")[0]):
current_split_list.append(s)
if current_split_list:
splits_list.append(current_split_list)
splits_list = [random_sample(s_list, 1)[0] for s_list in splits_list]
ds_list = [
load_dataset(path=self.context_ds_name, name=split, streaming=True, split='all')
for split in splits_list
]
datasets = ds_list[0]
if len(ds_list) > 1:
datasets = interleave_datasets(ds_list, probabilities=None)
return datasets
def findContexts(
self,
sample: str,
word: str
) -> Dict[str,str]:
sample = sample['text'].strip()
context = ""
m = re.search(r'\b{}\b'.format(word), sample)
if m:
init = m.span()[0]
end = init+len(word)
context = sample[:init]+"<u><b>"+word+"</b></u>"+sample[end:]
return {'context':context}
def getSubsetsInfo(
self,
word: str
) -> Tuple:
total_freq = self.vocab.getFreq(word)
subsets_name_list = list(self.vocab.getSubsets(word).keys())
subsets_freq_list = list(self.vocab.getSubsets(word).values())
# Create subset frequency dict to subset_freq component
subsets_info = {
s_name + f" ({s_freq})": s_freq/total_freq
for s_name, s_freq in zip(subsets_name_list, subsets_freq_list)
}
subsets_origin_info = dict(sorted(subsets_info.items(), key=lambda x: x[1], reverse=True))
subsets_info = self.Label.compute(subsets_origin_info)
return subsets_info, subsets_origin_info
def getContexts(
self,
word: str,
n_context: int,
ds
) -> List[Tuple]:
ds_w_contexts = ds.map(lambda sample: self.findContexts(sample, word))
only_contexts = ds_w_contexts.filter(lambda sample: sample['context'] != "")
shuffle_contexts = only_contexts.shuffle(buffer_size=10)
list_of_dict = list(shuffle_contexts.take(n_context))
list_of_contexts = [
(i, dic['context'], dic['subset'])
for i,dic in enumerate(list_of_dict)
]
return list_of_contexts |