File size: 5,179 Bytes
743fd42
 
 
 
 
 
2d0d0c7
 
 
 
 
 
59f3461
2d0d0c7
743fd42
 
 
7e1c3f7
 
743fd42
 
 
2d0d0c7
 
 
 
 
 
 
 
 
743fd42
 
2d0d0c7
 
 
743fd42
 
 
 
 
2d0d0c7
 
 
 
 
 
 
 
 
 
 
 
 
743fd42
 
2d0d0c7
 
 
 
 
 
 
 
 
743fd42
2d0d0c7
 
 
 
c5fd87e
7e1c3f7
2d0d0c7
 
 
 
 
 
 
 
743fd42
2d0d0c7
 
 
 
 
743fd42
 
 
2d0d0c7
 
 
 
 
 
 
 
 
 
 
 
743fd42
 
2d0d0c7
 
 
 
 
 
743fd42
 
 
2d0d0c7
 
 
 
 
 
 
 
 
 
 
 
743fd42
 
2d0d0c7
 
 
743fd42
 
 
 
 
 
 
 
 
2d0d0c7
 
743fd42
 
2d0d0c7
743fd42
 
 
 
 
 
 
2d0d0c7
 
7e1c3f7
2d0d0c7
743fd42
 
 
2d0d0c7
 
 
743fd42
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
from modules.module_logsManager import HuggingFaceDatasetSaver
from modules.module_connection import Word2ContextExplorerConnector
from tool_info import TOOL_INFO
import gradio as gr
import pandas as pd


def interface(
    vocabulary, # Vocabulary class instance
    contexts: str,
    available_logs: bool,
    available_wordcloud: bool,
    lang: str="es"
) -> gr.Blocks:

    # --- Init logs ---
    log_callback = HuggingFaceDatasetSaver(
        available_logs=available_logs,
        dataset_name=f"logs_edia_datos_{lang}"
    )

    # --- Init Class ---
    connector = Word2ContextExplorerConnector(
        vocabulary=vocabulary, 
        context=contexts
    )

    # --- Load language ---
    labels = pd.read_json(
        f"language/{lang}.json"
    )["DataExplorer_interface"]

    # --- Interface ---
    iface = gr.Blocks(
        css=".container { max-width: 90%; margin: auto;}"
    )

    with iface:
        with gr.Row():
            with gr.Column():
                with gr.Group():
                    gr.Markdown(
                        value=labels["step1"]
                    )
                    with gr.Row(): 
                        input_word = gr.Textbox(
                            label=labels["inputWord"]["title"], 
                            show_label=False, 
                            placeholder=labels["inputWord"]["placeholder"]
                        )
                    with gr.Row(): 
                        btn_get_w_info = gr.Button(
                            value=labels["wordInfoButton"]
                        )

                with gr.Group():
                    gr.Markdown(
                        value=labels["step2"]
                    )
                    n_context = gr.Slider(
                        label="", 
                        step=1, minimum=1, maximum=30, value=5, 
                        visible=True, 
                        interactive=True
                    )
                with gr.Group():
                    gr.Markdown(
                        value=labels["step3"]
                    )
                    subsets_choice = gr.CheckboxGroup(
                        label="Conjuntos",
                        show_label=False,
                        interactive=True, 
                        visible=True
                    )
                    with gr.Row(): 
                        btn_get_contexts = gr.Button(
                            value=labels["wordContextButton"], 
                            visible=True
                        )
                
                with gr.Row(): 
                    out_msj = gr.Markdown(
                        label="", 
                        visible=True
                    )

            with gr.Column():
                with gr.Group():
                    gr.Markdown(
                        value=labels["wordDistributionTitle"]
                    )
                    dist_plot = gr.Plot(
                        label="", 
                        show_label=False
                    )
                    wc_plot = gr.Plot(
                        label="", 
                        show_label=False, 
                        visible=available_wordcloud
                    )

                with gr.Group():
                    gr.Markdown(
                        value=labels["frequencyPerSetTitle"]
                    )
                    subsets_freq = gr.HTML(
                        label=""
                    )
    
        with gr.Row():
            with gr.Group():
                with gr.Row(): 
                    gr.Markdown(
                        value=labels["contextList"]
                    )
                with gr.Row(): 
                    out_context = gr.Dataframe(
                        label="", 
                        interactive=False, 
                        value=pd.DataFrame([], columns=['']),
                        wrap=True,
                        datatype=['str','markdown','str','markdown']
                    )

        with gr.Group():
            gr.Markdown(
                value=TOOL_INFO
            )

        btn_get_w_info.click( 
            fn=connector.get_word_info, 
            inputs=[input_word], 
            outputs=[out_msj,
                    out_context,
                    subsets_freq,
                    dist_plot,
                    wc_plot,
                    subsets_choice
            ]
        )
        
        btn_get_contexts.click(
            fn=connector.get_word_context, 
            inputs=[input_word, n_context, subsets_choice], 
            outputs=[out_msj, out_context]
        )
        
        # --- Logs ---
        save_field = [input_word, subsets_choice]
        log_callback.setup(
            components=save_field, 
            flagging_dir="logs"
        )
        
        btn_get_contexts.click(
            fn=lambda *args: log_callback.flag(
                flag_data=args,
                flag_option="datos",
                username="vialibre"
            ),
            inputs=save_field,
            outputs=None, 
            preprocess=False
        )
    
    return iface