const spanish_data = {
"toolName": "EDIA: Estereotipos y Discriminación en Inteligencia Artificial",
"toolSubname": "Estereotipos y Discriminación en Inteligencia Artificial",
"introduction_1": "Los modelos de lenguaje y las representaciones de palabras obtenidas con aprendizaje automatizado han demostrado contener estereotipos discriminatorios. Aquí presentamos un conjunto de herramientas de inspección: EDIA (Estereotipos y Discriminación en Inteligencia Artificial). El objetivo de este proyecto es diseñar y evaluar una metodología que permita a comunidades de ciencias sociales y personas expertas de dominio en Latinoamérica, explorar sesgos y estereotipos discriminatorios presentes en word embeddings y modelos de lenguaje. También les permite definir el tipo de sesgo a explorar y acercarse a un enfoque interseccional desde dos dimensiones binarias de análisis (por ejemplo, mujer-hombre vs gordo-flaco).",
"introduction_2": "EDIA contiene diversas herramientas que sirven para detectar e inspeccionar sesgos en sistemas de procesamiento de lenguaje natural basados en modelos de lenguaje o word embeddings. Contamos con modelos en español e inglés para trabajar y explorar los sesgos en diferentes idiomas a requerimiento de las personas usuarias. Cada una de las siguientes herramientas son funciones distintas que nos acercan a un aspecto particular de la problemática del sesgo y a la vez, nos permiten entender partes diferentes pero complementarias del mismo.",
"wordBias": {
"title": "Sesgos en listas de palabras",
"description": "Basada en una técnica para detectar sesgos en WE, esta función nos permite visualizar la distribución de palabras en un espacio 2D y con ello observar la distancia entre ellas. Entre más contextos de ocurrencia compartan, estarán más cerca, y entre menos contextos de ocurrencia compartan, estarán más lejos. Esto, generalmente, hace que las palabras con un significado parecido aparezcan cercanas. A partir de la creación de listas de palabras que nos sirven para definir campos semánticos, podremos observar sesgos y explorar palabras vecinas entre esos significados.",
"tutorial": "Tutorial: Explorar listas de palabras",
"manual-1": "Manual:
Explorar listas de palabras",
"manual-2":"Manual:
Explorar sesgos en listas"
},
"phraseBias": {
"title": "Sesgos en frases",
"description": "Aquí desplegamos una herramienta que utiliza modelos de lenguaje para evidenciar sesgos en frases, lo que nos permite trabajar con sesgos no binarios (como mujer - hombre, femenino - masculino) y eliminar ambigüedades (producto de polisemias). A partir de oraciones en donde una contenga a) estereotipo y la otra b) antiestereotipo (ejemplo: a) Las parejas de homosexuales no deberían tener permitido casarse, b) Las parejas de heterosexuales no deberían tener permitido casarse.), buscamos definir las preferencias de un modelo de lenguaje pre-entrenado a la hora de producir lenguaje. Si el modelo no tuviera sesgo ambas tendrían el mismo nivel de preferencia, pero si el modelo estuviera sesgado, una va a tener mayor preferencia.",
"tutorial-1": "Tutorial:
Sesgos en frases",
"manual-1": "Manual:
Sesgos en frases",
"tutorial-2": "Tutorial:
Crows - Pairs",
"manual-2": "Manual:
Crows - Pairs"
},
"dataBias": {
"title": "Datos de las palabras",
"description": "Esta herramienta muestra información adicional de la palabra, como la frecuencia y el contexto de aparición dentro del corpus de entrenamiento. Sirve para explicar e interpretar comportamientos inesperados en otras pestañas producto de la polisemia o la poca frecuencia de las palabras, y a partir de esta exploración, poder realizar modificaciones pertinentes en nuestras listas de palabras y frases.",
"tutorial": "Tutorial: Datos de las palabras",
"manual": "Manual"
},
"our-pages-title": "Puedes encontrar a EDIA en:",
"footer": "ACLARACIONES IMPORTANTES: Las consultas realizadas al usar este software quedan registradas automáticamente en nuestro sistema. Declaramos que la información recabada es anónima, confidencial y que el uso de la misma sólo será para fines de investigación. Para realizar las exploraciones de las dimensiones de análisis, como género, necesitamos simplificarlo a un fenómeno binario; entendemos que es una sobresimplificación, se trata de una primera aproximación a la familia de soluciones de mitigación que sabemos requiere de una mayor complejidad para tratar los fenómenos de sesgo dentro de los constructos sociales.",
"hf_btn": "Pruebalo en HuggingFace🤗!",
"ccad_btn": "Pruebalo en CCAD!",
"tutorial_btn": "Video presentación de EDIA"
}