Spaces:
Runtime error
Runtime error
treasuraid
commited on
Commit
·
e83adaa
1
Parent(s):
efbaec2
Upload 3 files
Browse files- app.py +83 -0
- weights/Sample.png +0 -0
- weights/pytorch_lora_weights.bin +3 -0
app.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import diffusers
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
import time
|
5 |
+
|
6 |
+
import streamlit as st
|
7 |
+
|
8 |
+
from diffusers import DiffusionPipeline, UNet2DConditionModel
|
9 |
+
from PIL import Image
|
10 |
+
|
11 |
+
|
12 |
+
MODEL_REPO = 'OFA-Sys/small-stable-diffusion-v0'
|
13 |
+
LoRa_DIR = '/weights'
|
14 |
+
DATASET_REPO = 'VESSL/Bored_Ape_NFT_text'
|
15 |
+
SAMPLE_IMAGE = '/weights/Sample.png'
|
16 |
+
def load_pipeline_w_lora() :
|
17 |
+
|
18 |
+
# Load pretrained unet from huggingface
|
19 |
+
unet = UNet2DConditionModel.from_pretrained(
|
20 |
+
MODEL_REPO,
|
21 |
+
subfolder="unet",
|
22 |
+
revision=None
|
23 |
+
)
|
24 |
+
|
25 |
+
# Load LoRa attn layer weights to unet attn layers
|
26 |
+
unet.load_attn_procs(LoRa_DIR)
|
27 |
+
|
28 |
+
# Load pipeline
|
29 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
30 |
+
MODEL_REPO,
|
31 |
+
unet=unet,
|
32 |
+
revision=None,
|
33 |
+
torch_dtype=torch.float32,
|
34 |
+
)
|
35 |
+
|
36 |
+
return pipeline
|
37 |
+
|
38 |
+
|
39 |
+
def elapsed_time(fn, *args):
|
40 |
+
start = time.time()
|
41 |
+
output = fn(*args)
|
42 |
+
end = time.time()
|
43 |
+
|
44 |
+
elapsed = f'{end - start:.2f}'
|
45 |
+
|
46 |
+
return elapsed, output
|
47 |
+
|
48 |
+
|
49 |
+
def main():
|
50 |
+
|
51 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
52 |
+
|
53 |
+
st.title("BAYC Text to IMAGE generator")
|
54 |
+
st.write(f"Stable diffusion model is fine-tuned by lora using dataset {DATASET_REPO}")
|
55 |
+
|
56 |
+
sample = Image.open(SAMPLE_IMAGE)
|
57 |
+
st.image(sample, caption="An ape with solid gold fur and beanie")
|
58 |
+
|
59 |
+
elapsed, pipeline = elapsed_time(load_pipeline_w_lora)
|
60 |
+
st.write(f"Model is loaded in {elapsed} seconds!")
|
61 |
+
|
62 |
+
prompt = st.text_input(
|
63 |
+
label="Write prompt to generate your unique BAYC image! (e.g. An ape with golden fur)")
|
64 |
+
|
65 |
+
num_images = st.slider("Number of images to generate", 1, 10, 1)
|
66 |
+
|
67 |
+
seed = st.slider("Seed for images", 1, 10000, 1)
|
68 |
+
|
69 |
+
if prompt and num_images and seed:
|
70 |
+
st.write(f"Generating {num_images}BAYC image with prompt {prompt}...")
|
71 |
+
|
72 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
73 |
+
images = []
|
74 |
+
for img_idx in range(num_images):
|
75 |
+
generated_image = pipeline(prompt, num_inference_steps=30, generator=generator).images[0]
|
76 |
+
images.append(generated_image)
|
77 |
+
|
78 |
+
st.write("Done!")
|
79 |
+
|
80 |
+
st.image(images, width=150, caption=f"Generated Images with {prompt}")
|
81 |
+
|
82 |
+
if __name__ == '__main__':
|
83 |
+
main()
|
weights/Sample.png
ADDED
weights/pytorch_lora_weights.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4927a8337a888edff7d844cac082c141726ac60fe8ad065c9143ec0987a9297
|
3 |
+
size 1080571
|