Spaces:
Sleeping
Sleeping
File size: 11,517 Bytes
cdd0177 1eabbd4 cdd0177 1eabbd4 cdd0177 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import streamlit as st
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px
import pandas as pd
import plotly.graph_objects as go
from streamlit_extras.stylable_container import stylable_container
import pickle
import ast
def check_and_download_file(file_path, url):
if os.path.exists(file_path):
print(f"The file '{file_path}' already exists.")
else:
print(f"The file '{file_path}' does not exist. Downloading...")
try:
response = requests.get(url)
response.raise_for_status() # Check if the request was successful
with open(file_path, 'wb') as file:
file.write(response.content)
print(f"File downloaded successfully and saved as '{file_path}'.")
except requests.exceptions.RequestException as e:
print(f"An error occurred while downloading the file: {e}")
# Implement AND condition when downloading data
st.set_page_config(layout="wide")
color = {'Black or African American': '#ff7eb6', 'White':'#be95ff', 'Native American':'#0f62fe', 'Indian':'#82cfff', 'Japanese':'lightyellow', 'Korean':'gray','Chinese':'yellow', 'Hispanic':'#dface6', 'Pacific Islander':'#3ddbd9', 'Unkown/Other':'#c1c7cd','Filipino':'Green', 'Middle Eastern':'#000000','Vietnamese':'coral','Laotian':'cornsilk','Cambodian':'darkcyan','Other Asian':'darkgoldenrod', 'Asian':'#82cfff',}
file = open("login_state.pkl",'rb')
st.session_state['logged_in'] = pickle.load(file)
file.close()
#----------------------------NavBar-------------------------#
hide_menu_style = """
<style>
#MainMenu {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_menu_style, unsafe_allow_html=True)
if st.session_state.get("logged_in") == False or st.session_state.get("logged_in") == None:
st.switch_page("app.py")
st.markdown('<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css" integrity="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm" crossorigin="anonymous">', unsafe_allow_html=True)
st.markdown("""
<head>
<script defer src="https://pyscript.net/latest/pyscript.js"></script>
</head>
<nav class="navbar fixed-top navbar-expand-lg navbar-dark" style="background-color: #3498DB;">
<a class="navbar-brand" href="https://www.ipr.northwestern.edu/who-we-are/faculty-experts/redbird.html" target="_blank">RJA Dashboard</a>
<button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarNav" aria-controls="navbarNav" aria-expanded="false" aria-label="Toggle navigation">
<span class="navbar-toggler-icon"></span>
</button>
<div class="collapse navbar-collapse" id="navbarNav" style="width:100%;">
<ul class="navbar-nav">
<li class="nav-item active">
<a class="nav-link disabled" href="https://sanbernardinorja.streamlit.app/page_0" target="_self">Arrest Summary<span class="sr-only">(current)</span></a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_1" target="_self">Charge By Race</a>
</li>
<li class="nav-item">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/page_2" target="_self">Download Data</a>
</li>
</ul>
<ul class="navbar-nav ml-auto">
<li class="nav-item mr-auto" style="padding-left:5px;padding-right:5px;outline-color:#f0f2f5;border: 2px solid white;border-radius:10px;">
<a class="nav-link" href="https://sanbernardinorja.streamlit.app/ target="_self" >Logout</a>
</li>
</ul>
</div>
</nav>
""", unsafe_allow_html=True)
# with open("list_of_charges.pkl", "rb") as fp: # Unpickling
# charges = pickle.load(fp)
# Page 3
Page3 = stylable_container(key="Page3", css_styles=""" {box-shadow: rgba(0, 0, 0, 0.24) 0px 3px 15px;} """)
Page3.header("Download Data", anchor = 'section-3', help = 'Download data relevant to your case. Use the filters to Determine what data do you need.')
selected_point = []
#loc = "DA_referrals_2022(1).csv"
Charge = Page3.selectbox('Select Type of Charge', ('Booking Charge', 'Filed Charge', 'CDCR'))
file_path = "Referral_page2.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Referral_page2.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T230259Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=a5063cb83d0ace24fa7d476c3edabc364ddbdf8c83c8995a762b032f33171a3c'
check_and_download_file(file_path, url)
file_path = "Court_page2.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Court_page2.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T230325Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=3e6ee21cfbc08692d3d55303bbdd19dd905c9f52e3bc25f82f018e95f94fddf2'
check_and_download_file(file_path, url)
file_path = "Sentence_page2.csv"
url = 'https://rja-sanbernardino.s3.us-east-1.amazonaws.com/dashboard/Sentence_page2.csv?response-content-disposition=inline&X-Amz-Security-Token=IQoJb3JpZ2luX2VjEM%2F%2F%2F%2F%2F%2F%2F%2F%2F%2F%2FwEaCXVzLWVhc3QtMSJGMEQCIFmSNoakzC4hQlNV2NcIpccGqt1lJiw7dumO58Kv5HHaAiBCHRkYbyL09%2BOEofcZF%2Bns9A09PO6x%2B0OxiYD2hpoX9SrkAghnEAAaDDg5MTM3NzEzNDQwMCIMZmel5gOdx72MuskSKsECTeZ5%2BcyfkQg%2B%2B3A7JvIv%2BC1gROoz%2FDXmPWbU%2FSAZeVnNm52uZ%2BqIMs%2BwWYZetz3c6yCs4jAoaTtG5m%2BQUFHX0y8bA131w1uOZUPrG8vFPXNHWSgPIc2G%2BZoXdzeipp2WUaTIGlCwyWXDI0XfP9qVjd6Xq4HLnggPA4oSEu1YwgK%2B47jO0XM%2BucrzhxuqSmi6wVGtzHp93KmPFT6jVAyM%2Bl6kb3apdWTa8YHjAzVRSLF7Zz%2Fp%2BMqMHJu4rqCAxFjNHzYu6iNqfLa17QRksNm6ceMouz8Hmv3npsckPC47fZLRmUn1RHdT0lNBOq%2BqiQzrSDxhGIpVUsH9S8rVkSMsGKupUo8Hj18GsuAsTeqtIICu9QrV%2F0yEnkpMbv4YBkbIP06fCLDbvEOFYkR6E8%2BCNduIk2IsaFdCuA%2FrBojQ9DSdMLCbo7MGOrQCUO2zBp8Ayj4ia9p0LjRwbGHDNtKhAQzxdILs%2BTn%2BTREt231CGQ119MkAhv4MeK685Da%2F8VOpav58HESVRdNqcYh%2B3AYuXsCwnC2WHYIpsgz5VssWUvwH%2BvPMwkzzIgXcdwNVBNS4m67c5pcya%2BQIVR3ShsBOv4BiTESmnjwUlxORB%2ByYvdfTz5gkVx3IA97wri%2FEKTH5prAsLR80ue2ayQDYnciX8awXYavJ7ypQa4nXgiyzOoy8ZJ5eA5yDeGiZG9rGkopMkjLVgrZeDfK7LH87Vetx3Jcxrwwwh7NVIvXQ0rnf5nJEweuW7EcgRSEeyB11pMUsSZC3f4NCRFt%2B6FcwqpJsY%2FxJBLgtroXp3XBHcZlH4pmx6hcHqFRAYav6ZSUdjfavsbSA5gaarEscJfaQrdk%3D&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20240611T230350Z&X-Amz-SignedHeaders=host&X-Amz-Expires=43200&X-Amz-Credential=ASIA47CRXVNAOF2MQFR4%2F20240611%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=9bbc311f46095b2447d6c624b8e7151e9c921747b892225ec1fa6e38192c705b'
check_and_download_file(file_path, url)
loc = "Referral_page2.csv" if Charge == 'Booking Charge' else "Court_page2.csv" if Charge == 'Filed Charge' else "Sentence_page2.csv"
df = pd.read_csv(loc)
df = df.drop(columns='Unnamed: 0')
uid = 'UID' if Charge == 'Booking Charge' else 'Case Number'
filename = "list_of_charges.pkl" if Charge == 'Booking Charge' else "list_of_charges_detailed.pkl"
with open(filename, "rb") as fp: # Unpickling
charges = pickle.load(fp)
#split_first = False if loc == "Referral_page2.csv" else True
cols = Page3.columns(4)
Filtera = cols[0].multiselect('Select Charges', tuple(charges), help='Select Charges relevant to your case and client')
Filterb = cols[2].multiselect('Select Ethnicity', tuple(color.keys()), help='Select relevant Ethnicity')
Filterc = cols[1].selectbox('Select Function - Charges', ("AND", "OR"), help="AND - All Clients charged with all chosen charges \n\n OR - All Clients charged with atleast one of the chosen charges")
cols_list = df.columns.tolist()
cols_list.remove('Charges')
cols_list.remove('Race')
cols_list.remove(uid)
Filterd = cols[3].multiselect('Select Additional Columns to View', tuple(cols_list), help="1. Incident Number - Unique Incident ID assigned to SF Cases \n\n 2. Gender - Gender of the perpetrator \n\n 3. Booked.Case.Type / Filed.Case.Type - Felony / Misdemeanor \n\n 4. Age.at.Arrest - Age at which the person was arrested \n\n 5. Status.CTNum / Status.CTNum.Agg - Case Status After arrest or filing i.e. new charges filed or discharged \n\n 6. Description - Arrest / Charges Description \n\n 7. Year - Year of Arrest for Booking charge / Year of Charging for Filed Charge or Sentenced For \n\n 8. Case.Dispo - Case Disposition Number \n\n 9. Dispo.Description - Final court decision")
if len(Filtera) > 0:
filst = "|".join(Filtera)
df = df[df['Charges'].str.contains(filst, regex=True, na=False)]
if len(Filterb) > 0:
filst = "|".join(Filterb)
df = df[df['Races'].str.contains(filst, regex=True, na=False)]
if Filterc == 'AND' and len(Filtera) > 0:
cnos = [df[df['Charges'].str.contains(i)][uid].tolist() for i in Filtera]
cm_cnos = list(set.intersection(*map(set, cnos)))
df = df[df[uid].isin(cm_cnos)]
df = df.drop_duplicates()
df[uid] = df[uid].map(str)
for i in df.columns[1:]:
df[i] = df[i].str.strip('[]').str.split(',')
disp_cols = [uid, 'Charges', 'Race'] + Filterd
Page3.dataframe(df[disp_cols],width=1300)
|