Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 13,511 Bytes
9346f1c 4596a70 2a5f9fb 58b9de9 976f398 58b9de9 8c49cb6 2a73469 10f9b3c 58b9de9 d084b26 58b9de9 d084b26 58b9de9 d084b26 58b9de9 d084b26 58b9de9 d084b26 26286b2 58b9de9 adb0416 2a73469 ffefe11 58b9de9 614ee1f 1f60a20 8c49cb6 72a0f0f e3a8804 ef5b51c 512b095 a2790cb 72a0f0f 512b095 58b9de9 aa7c3f4 adb0416 8c49cb6 58b9de9 8c49cb6 58b9de9 8c49cb6 ecef2dc 7644705 72a0f0f efeee6d ef5b51c adb0416 58b9de9 adb0416 ef5b51c adb0416 8c49cb6 e3a8804 8c49cb6 1f26f6c 3ae1b8c 58b9de9 3ae1b8c 58b9de9 dc0413f d2179b0 8c49cb6 d2179b0 7644705 01233b7 58b9de9 10f9b3c 8cb7546 613696b ecef2dc 8c49cb6 e3a8804 72a0f0f e3a8804 8c49cb6 df66f6e 58b9de9 df66f6e 58b9de9 df66f6e 8c49cb6 2a5f9fb 8c49cb6 601f2e9 fc1e99b 58b9de9 fc1e99b 58b9de9 fc1e99b 58b9de9 fc1e99b 8c49cb6 6e8f400 8c49cb6 58b9de9 8c49cb6 58b9de9 8c49cb6 58b9de9 6e8f400 ecef2dc 156ef43 6e8f400 460d762 6e8f400 58b9de9 6e8f400 a2790cb 8c49cb6 a2790cb e3a8804 a2790cb 8c49cb6 ab6f548 f2bc0a5 613696b 58b9de9 0227006 613696b 8dfa543 0227006 58b9de9 6e8f400 8dfa543 8c49cb6 8dfa543 58b9de9 fc1e99b 8dfa543 8c49cb6 8dfa543 58b9de9 fc1e99b 8dfa543 8c49cb6 8dfa543 58b9de9 fc1e99b 8dfa543 00358b1 0227006 6e8f400 a163e5c b323764 58b9de9 8c49cb6 b323764 ef627e9 b323764 0227006 6e8f400 12cea14 58b9de9 8c49cb6 12cea14 217b585 12cea14 58b9de9 8c49cb6 12cea14 6e8f400 8c49cb6 8cb7546 6e8f400 58b9de9 6e8f400 12cea14 8c49cb6 6e8f400 8cb7546 d16cee2 58b9de9 67109fc d16cee2 adb0416 d16cee2 10f9b3c a2790cb 10f9b3c d4aa996 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
import gradio as gr
import pandas as pd
from apscheduler.schedulers.background import BackgroundScheduler
from huggingface_hub import snapshot_download
import src.display.about as about
from src.display.css_html_js import custom_css
import src.display.utils as utils
import src.envs as envs
import src.populate as populate
import src.submission.submit as submit
def restart_space():
envs.API.restart_space(repo_id=envs.REPO_ID, token=envs.TOKEN)
try:
print(envs.EVAL_REQUESTS_PATH)
snapshot_download(
repo_id=envs.QUEUE_REPO, local_dir=envs.EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
try:
print(envs.EVAL_RESULTS_PATH)
snapshot_download(
repo_id=envs.RESULTS_REPO, local_dir=envs.EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30
)
except Exception:
restart_space()
raw_data, original_df = populate.get_leaderboard_df(envs.EVAL_RESULTS_PATH, envs.EVAL_REQUESTS_PATH, utils.COLS, utils.BENCHMARK_COLS)
leaderboard_df = original_df.copy()
(
finished_eval_queue_df,
running_eval_queue_df,
pending_eval_queue_df,
) = populate.get_evaluation_queue_df(envs.EVAL_REQUESTS_PATH, utils.EVAL_COLS)
# Searching and filtering
def update_table(
hidden_df: pd.DataFrame,
columns: list,
type_query: list,
precision_query: str,
size_query: list,
show_deleted: bool,
query: str,
):
filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
filtered_df = filter_queries(query, filtered_df)
df = select_columns(filtered_df, columns)
return df
def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
return df[(df[utils.AutoEvalColumn.dummy.name].str.contains(query, case=False))]
def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
always_here_cols = [
utils.AutoEvalColumn.model_type_symbol.name,
utils.AutoEvalColumn.model.name,
]
# We use COLS to maintain sorting
filtered_df = df[
always_here_cols + [c for c in utils.COLS if c in df.columns and c in columns] + [utils.AutoEvalColumn.dummy.name]
]
return filtered_df
def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
final_df = []
if query != "":
queries = [q.strip() for q in query.split(";")]
for _q in queries:
_q = _q.strip()
if _q != "":
temp_filtered_df = search_table(filtered_df, _q)
if len(temp_filtered_df) > 0:
final_df.append(temp_filtered_df)
if len(final_df) > 0:
filtered_df = pd.concat(final_df)
filtered_df = filtered_df.drop_duplicates(
subset=[utils.AutoEvalColumn.model.name, utils.AutoEvalColumn.precision.name, utils.AutoEvalColumn.revision.name]
)
return filtered_df
def filter_models(
df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
) -> pd.DataFrame:
# Show all models
filtered_df = df
# if show_deleted:
# filtered_df = df
# else: # Show only still on the hub models
# filtered_df = df[df[utils.AutoEvalColumn.still_on_hub.name]]
filtered_df = df
type_emoji = [t[0] for t in type_query]
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
filtered_df = filtered_df.loc[df[utils.AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
numeric_interval = pd.IntervalIndex(sorted([utils.NUMERIC_INTERVALS[s] for s in size_query]))
params_column = pd.to_numeric(df[utils.AutoEvalColumn.params.name], errors="coerce")
mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
filtered_df = filtered_df.loc[mask]
return filtered_df
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(about.TITLE)
gr.Markdown(about.INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("π
LLM Benchmark", elem_id="llm-benchmark-tab-table", id=0):
with gr.Row():
with gr.Column():
with gr.Row():
search_bar = gr.Textbox(
placeholder=" π Search for your model (separate multiple queries with `;`) and press ENTER...",
show_label=False,
elem_id="search-bar",
)
with gr.Row():
shown_columns = gr.CheckboxGroup(
choices=[
c.name
for c in utils.fields(utils.AutoEvalColumn)
if not c.hidden and not c.never_hidden and not c.dummy
],
value=[
c.name
for c in utils.fields(utils.AutoEvalColumn)
if c.displayed_by_default and not c.hidden and not c.never_hidden
],
label="Select columns to show",
elem_id="column-select",
interactive=True,
)
with gr.Row():
deleted_models_visibility = gr.Checkbox(
value=False, label="Show gated/private/deleted models", interactive=True
)
with gr.Column(min_width=320):
#with gr.Box(elem_id="box-filter"):
filter_columns_type = gr.CheckboxGroup(
label="Model types",
choices=[t.to_str() for t in utils.ModelType],
value=[t.to_str() for t in utils.ModelType],
interactive=True,
elem_id="filter-columns-type",
)
filter_columns_precision = gr.CheckboxGroup(
label="Precision",
choices=[i.value.name for i in utils.Precision],
value=[i.value.name for i in utils.Precision],
interactive=True,
elem_id="filter-columns-precision",
)
filter_columns_size = gr.CheckboxGroup(
label="Model sizes (in billions of parameters)",
choices=list(utils.NUMERIC_INTERVALS.keys()),
value=list(utils.NUMERIC_INTERVALS.keys()),
interactive=True,
elem_id="filter-columns-size",
)
leaderboard_table = gr.components.Dataframe(
value=leaderboard_df[
[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden]
+ shown_columns.value
+ [utils.AutoEvalColumn.dummy.name]
],
headers=[c.name for c in utils.fields(utils.AutoEvalColumn) if c.never_hidden] + shown_columns.value,
datatype=utils.TYPES,
elem_id="leaderboard-table",
interactive=False,
visible=True,
column_widths=["2%", "33%"]
)
# Dummy leaderboard for handling the case when the user uses backspace key
hidden_leaderboard_table_for_search = gr.components.Dataframe(
value=original_df[utils.COLS],
headers=utils.COLS,
datatype=utils.TYPES,
visible=False,
)
search_bar.submit(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
)
for selector in [shown_columns, filter_columns_type, filter_columns_precision, filter_columns_size, deleted_models_visibility]:
selector.change(
update_table,
[
hidden_leaderboard_table_for_search,
shown_columns,
filter_columns_type,
filter_columns_precision,
filter_columns_size,
deleted_models_visibility,
search_bar,
],
leaderboard_table,
queue=True,
)
with gr.TabItem("π About", elem_id="llm-benchmark-tab-table", id=2):
gr.Markdown(about.LLM_BENCHMARKS_TEXT, elem_classes="markdown-text")
with gr.TabItem("π Submit here! ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
with gr.Row():
gr.Markdown(about.EVALUATION_QUEUE_TEXT, elem_classes="markdown-text")
with gr.Column():
with gr.Accordion(
f"β
Finished Evaluations ({len(finished_eval_queue_df)})",
open=False,
):
with gr.Row():
finished_eval_table = gr.components.Dataframe(
value=finished_eval_queue_df,
headers=utils.EVAL_COLS,
datatype=utils.EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"π Running Evaluation Queue ({len(running_eval_queue_df)})",
open=False,
):
with gr.Row():
running_eval_table = gr.components.Dataframe(
value=running_eval_queue_df,
headers=utils.EVAL_COLS,
datatype=utils.EVAL_TYPES,
row_count=5,
)
with gr.Accordion(
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})",
open=False,
):
with gr.Row():
pending_eval_table = gr.components.Dataframe(
value=pending_eval_queue_df,
headers=utils.EVAL_COLS,
datatype=utils.EVAL_TYPES,
row_count=5,
)
with gr.Row():
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text")
with gr.Row():
with gr.Column():
model_name_textbox = gr.Textbox(label="Model name")
revision_name_textbox = gr.Textbox(label="Revision commit", placeholder="main")
model_type = gr.Dropdown(
choices=[t.to_str(" : ") for t in utils.ModelType if t != utils.ModelType.Unknown],
label="Model type",
multiselect=False,
value=None,
interactive=True,
)
with gr.Column():
precision = gr.Dropdown(
choices=[i.value.name for i in utils.Precision if i != utils.Precision.Unknown],
label="Precision",
multiselect=False,
value="float16",
interactive=True,
)
weight_type = gr.Dropdown(
choices=[i.value.name for i in utils.WeightType],
label="Weights type",
multiselect=False,
value="Original",
interactive=True,
)
base_model_name_textbox = gr.Textbox(label="Base model (for delta or adapter weights)")
submit_button = gr.Button("Submit Eval")
submission_result = gr.Markdown()
submit_button.click(
submit.add_new_eval,
[
model_name_textbox,
base_model_name_textbox,
revision_name_textbox,
precision,
weight_type,
model_type,
],
submission_result,
)
with gr.Row():
with gr.Accordion("π Citation", open=False):
citation_button = gr.Textbox(
value=about.CITATION_BUTTON_TEXT,
label=about.CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", seconds=1800)
scheduler.start()
demo.queue(default_concurrency_limit=40).launch()
|