vasudevgupta commited on
Commit
d5372a7
·
1 Parent(s): 8dd9039

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -21
app.py CHANGED
@@ -1,31 +1,29 @@
1
- import torch
2
- from transformers import BigBirdForQuestionAnswering, BigBirdTokenizerFast
3
  import gradio as gr
4
 
5
  FLAX_MODEL_ID = "vasudevgupta/flax-bigbird-natural-questions"
6
 
7
- if __name__ == "__main__":
8
- device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
9
-
10
- model = BigBirdForQuestionAnswering.from_pretrained(FLAX_MODEL_ID, block_size=64, num_random_blocks=3, from_flax=True)
11
- model.to(device)
12
  tokenizer = BigBirdTokenizerFast.from_pretrained(FLAX_MODEL_ID)
13
 
 
 
 
 
14
  def get_answer(question, context):
15
- encoding = tokenizer(question, context, return_tensors="pt", max_length=4096, padding="max_length", truncation=True)
16
- input_ids = encoding.input_ids.to(device)
17
- attention_mask = encoding.attention_mask.to(device)
18
-
19
- with torch.no_grad():
20
- start_scores, end_scores = model(input_ids=input_ids, attention_mask=attention_mask).to_tuple()
21
-
22
- # Let's take the most likely token using `argmax` and retrieve the answer
23
- all_tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"].squeeze().tolist())
24
-
25
- answer_tokens = all_tokens[torch.argmax(start_scores): torch.argmax(end_scores)+1]
26
- answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
27
-
28
- return answer
29
 
30
  default_context = "BigBird Pegasus just landed! Thanks to Vasudev Gupta, BigBird Pegasus from Google AI is merged into HuggingFace Transformers. Check it out today!!!"
31
  question = gr.inputs.TextBox(lines=2, default="Who added BigBird to HuggingFace Transformers?", label="Question")
 
1
+ import jax.numpy as jnp
2
+ from transformers import FlaxBigBirdForQuestionAnswering, BigBirdTokenizerFast
3
  import gradio as gr
4
 
5
  FLAX_MODEL_ID = "vasudevgupta/flax-bigbird-natural-questions"
6
 
7
+ if __name__ == "__main__":
8
+ model = FlaxBigBirdForQuestionAnswering.from_pretrained(FLAX_MODEL_ID, block_size=64, num_random_blocks=3)
 
 
 
9
  tokenizer = BigBirdTokenizerFast.from_pretrained(FLAX_MODEL_ID)
10
 
11
+ @jax.jit
12
+ def forward(*args, **kwargs):
13
+ return model(*args, **kwargs)
14
+
15
  def get_answer(question, context):
16
+
17
+ encoding = tokenizer(question, context, return_tensors="jax", max_length=4096, padding="max_length", truncation=True)
18
+ start_scores, end_scores = forward(**encoding).to_tuple()
19
+
20
+ # Let's take the most likely token using `argmax` and retrieve the answer
21
+ all_tokens = tokenizer.convert_ids_to_tokens(encoding["input_ids"][0].tolist())
22
+
23
+ answer_tokens = all_tokens[jnp.argmax(start_scores): jnp.argmax(end_scores)+1]
24
+ answer = tokenizer.decode(tokenizer.convert_tokens_to_ids(answer_tokens))
25
+
26
+ return answer
 
 
 
27
 
28
  default_context = "BigBird Pegasus just landed! Thanks to Vasudev Gupta, BigBird Pegasus from Google AI is merged into HuggingFace Transformers. Check it out today!!!"
29
  question = gr.inputs.TextBox(lines=2, default="Who added BigBird to HuggingFace Transformers?", label="Question")