File size: 3,827 Bytes
d775346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ab8d0c
d775346
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
from __future__ import annotations

import os

import gradio as gr
import numpy as np
import torch
import torchaudio
from seamless_communication.models.inference import Translator

from lang_list import LANGUAGE_NAME_TO_CODE, S2TT_TARGET_LANGUAGE_NAMES 


DESCRIPTION = """# Speech to Text Translation 

[SeamlessM4T](https://github.com/facebookresearch/seamless_communication) is designed to provide high-quality
translation, allowing people from different linguistic communities to communicate effortlessly through speech and text.

This unified model enables multiple tasks like Speech-to-Speech (S2ST), Speech-to-Text (S2TT), Text-to-Speech (T2ST)
translation and more, without relying on multiple separate models. Here the task is to do the speech to text translation. 
"""

CACHE_EXAMPLES = os.getenv("CACHE_EXAMPLES") == "1"


AUDIO_SAMPLE_RATE  = 44100
#MAX_INPUT_AUDIO_LENGTH =  1800 # in seconds
DEFAULT_TARGET_LANGUAGE = "French"

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
translator = Translator(
    model_name_or_card="seamlessM4T_medium",
    vocoder_name_or_card="vocoder_36langs",
    device=device,
)

task_name = "S2TT (Speech to Text translation)"
task_name = task_name.split()[0]

def predict(
    audio_source: str,
    input_audio_mic: str | None,
    input_audio_file: str | None,
    target_language: str,
) -> str:
    target_language_code = LANGUAGE_NAME_TO_CODE[target_language]

    if audio_source == "microphone": 
        input_data = input_audio_mic
    else:
        input_data = input_audio_file

    arr, org_sr = torchaudio.load(input_data)
    new_arr = torchaudio.functional.resample(arr, orig_freq=org_sr, new_freq=AUDIO_SAMPLE_RATE)
   
    torchaudio.save(input_data, new_arr, sample_rate=int(AUDIO_SAMPLE_RATE))

    text_out, wav, sr = translator.predict(
        input = input_data,
        task_str = task_name,
        tgt_lang=target_language_code,
        ngram_filtering=True,
    )
    
    return text_out



def update_audio_ui(audio_source: str) -> tuple[dict, dict]:
    mic = audio_source == "microphone"
    return (
        gr.update(visible=mic, value=None),  # input_audio_mic
        gr.update(visible=not mic, value=None),  # input_audio_file
    )


with gr.Blocks(css="style.css") as demo:

    gr.Markdown(DESCRIPTION)
    
    with gr.Group():
        with gr.Row():
            target_language = gr.Dropdown(
                label="Target language",
                choices=S2TT_TARGET_LANGUAGE_NAMES,
            )
            
        with gr.Row() as audio_box:
        
            audio_source = gr.Radio(
                label="Audio source",
                choices=["file", "microphone"],
                value="file",
            )
            input_audio_mic = gr.Audio(
                label="Input speech",
                type="filepath",
                source="microphone",
                visible=False,
            )
            input_audio_file = gr.Audio(
                label="Input speech",
                type="filepath",
                source="upload",
                visible=True,
            )
                
        btn = gr.Button("Translate") 
        with gr.Column():
            output_text = gr.Textbox(label="Translated text")

        audio_source.change(
            fn=update_audio_ui,
            inputs=audio_source,
            outputs=[
                input_audio_mic,
                input_audio_file,
            ],
            queue=False,
            api_name=False,
        )
    
        btn.click(
            fn=predict,
            inputs=[
                audio_source,
                input_audio_mic,
                input_audio_file,
                target_language,
            ],
            outputs=[output_text],
            api_name="run",
        )

demo.launch()