import os import gradio as gr import pandas as pd from functools import partial from ai_classroom_suite.MediaVectorStores import * from ai_classroom_suite.UIBaseComponents import * # default folder path folder_path = "context_files" # default output file name out_file_name = "vector_store.txt" # Check if vector store file already exist on disk def vector_store_file_exist(): # Get all files in the folder files = os.listdir(folder_path) # Check if output file already exist in this folder return (out_file_name in files) # Helper function to get all files' paths from a folder # Return a list of file paths except for README.txt and vector_store.txt (if exist) def get_filepaths_from_folder(folder_path): # Store the paths of files filepath_list = [] # Check if the specified folder exists if not os.path.exists(folder_path): print(f"Folder '{folder_path}' does not exist.") return filepath_list # Get all the files in the folder files = os.listdir(folder_path) for file_name in files: # Excluding README.txt and vector_store.txt if file_name != "README.txt" and file_name != "vector_store.txt": # Get the file path for each item file_path = os.path.join(folder_path, file_name) # Check if the item is a file and not a subdirectory if os.path.isfile(file_path): filepath_list.append(file_path) return filepath_list # Helper function to write content of files in a folder to output file def write_vector_store_to_file(out_file_name): # If vector_store.txt already exist, return nothing if vector_store_file_exist(): return gr.File(value=out_file_name, visible=False) # Only try to create the vector store if vector_store.txt doesn't exist else: # Call the function to read files (excluding README.txt and vector_store.txt) pathes filepath_list = get_filepaths_from_folder(folder_path) # Extract the text out from files files_content = files_to_text(filepath_list, chunk_size=100, chunk_overlap=20) # Write the vector_store onto the output file with open(out_file_name, "w") as f: for i in range(len(files_content)): item = str(files_content[i]) + "\n" f.write(item) # Show the downlodable vector store file and give instruction on upload the vector store file to disk (on HuggingFace) return gr.File(title="Download your vector store file and upload it into the context_files folder under Files", value=out_file_name, visible=True) # overwrites the original method since we don't deal with any vector stores display here def get_tutor_reply(chat_tutor): chat_tutor.get_tutor_reply() return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor def get_conversation_history(chat_tutor): return chat_tutor.conversation_memory, chat_tutor # To show the loading process on the button when creating vector store file def creating_vs_button(obj_in): return gr.update(interactive=False, value='Creating Vector Store file...') # To show the loading process on the button when initializing tutor def initializing_tutor_button(obj_in): return gr.update(interactive=False, value='Initializing Tutor...') with gr.Blocks() as ReadingQuiz: #initialize tutor (with state) study_tutor = gr.State(SlightlyDelusionalTutor()) # Student chatbot interface gr.Markdown(""" ## Chat with the Model This is the Blocher Reading Quiz App. """) # Instead of ask students to provide key, the key is now provided by the instructor. api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY")) # The instructor will provide a secret prompt/persona to the tutor instructor_prompt = gr.Textbox(label="Verify your prompt content", value = os.environ.get("SECRET_PROMPT"), visible=False) # Show input files file_input = gr.File(label="Reading materials", value=get_filepaths_from_folder(folder_path), visible=True) # Show output file for vector store when needed vs_file_name = gr.Text(visible=False, value=out_file_name) file_output = gr.File(visible=False) # Placeholders components text_input_none = gr.Textbox(visible=False) file_input_none = gr.File(visible=False) instructor_input_none = gr.TextArea(visible=False) learning_objectives_none = gr.Textbox(visible=False) # Set the secret prompt in this session and embed it to the study tutor vs_build_button = gr.Button("Initialize Tutor") vs_build_button.click( fn=creating_vs_button, inputs=vs_build_button, outputs=vs_build_button ).then( fn=write_vector_store_to_file, inputs=[vs_file_name], outputs=[file_output] ).then( fn=initializing_tutor_button, inputs=[vs_build_button], outputs=[vs_build_button] ).then( fn=create_reference_store, inputs=[study_tutor, vs_build_button, instructor_prompt, file_output, instructor_input_none, api_input, learning_objectives_none], outputs=[study_tutor, vs_build_button] ) with gr.Row(equal_height=True): with gr.Column(scale=2): chatbot = gr.Chatbot() with gr.Row(): user_chat_input = gr.Textbox(label="User input", scale=9) user_chat_submit = gr.Button("Ask/answer model", scale=1) # First add user's message to the conversation history # Then get reply from the tutor and add that to the conversation history user_chat_submit.click( fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False ).then( fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True ) # User can also press "Enter" on keyboard to submit a message user_chat_input.submit( fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False ).then( fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True ) # Download conversation history file with gr.Blocks(): gr.Markdown(""" ## Export Your Chat History Export your chat history as a .json, .txt, or .csv file """) with gr.Row(): export_dialogue_button_json = gr.Button("JSON") export_dialogue_button_txt = gr.Button("TXT") export_dialogue_button_csv = gr.Button("CSV") file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False) export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True) export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True) export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True) ReadingQuiz.queue().launch(server_name='0.0.0.0', server_port=7860)