brunhild217's picture
Update app.py
cbd4f7a
import os
import gradio as gr
import pandas as pd
from functools import partial
from ai_classroom_suite.MediaVectorStores import *
from ai_classroom_suite.UIBaseComponents import *
# default folder path
folder_path = "context_files"
# default output file name
out_file_name = "vector_store.txt"
# Check if vector store file already exist on disk
def vector_store_file_exist():
# Get all files in the folder
files = os.listdir(folder_path)
# Check if output file already exist in this folder
return (out_file_name in files)
# Helper function to get all files' paths from a folder
# Return a list of file paths except for README.txt and vector_store.txt (if exist)
def get_filepaths_from_folder(folder_path):
# Store the paths of files
filepath_list = []
# Check if the specified folder exists
if not os.path.exists(folder_path):
print(f"Folder '{folder_path}' does not exist.")
return filepath_list
# Get all the files in the folder
files = os.listdir(folder_path)
for file_name in files:
# Excluding README.txt and vector_store.txt
if file_name != "README.txt" and file_name != "vector_store.txt":
# Get the file path for each item
file_path = os.path.join(folder_path, file_name)
# Check if the item is a file and not a subdirectory
if os.path.isfile(file_path):
filepath_list.append(file_path)
return filepath_list
# Helper function to write content of files in a folder to output file
def write_vector_store_to_file(out_file_name):
# If vector_store.txt already exist, return nothing
if vector_store_file_exist():
return gr.File(value=out_file_name, visible=False)
# Only try to create the vector store if vector_store.txt doesn't exist
else:
# Call the function to read files (excluding README.txt and vector_store.txt) pathes
filepath_list = get_filepaths_from_folder(folder_path)
# Extract the text out from files
files_content = files_to_text(filepath_list, chunk_size=100, chunk_overlap=20)
# Write the vector_store onto the output file
with open(out_file_name, "w") as f:
for i in range(len(files_content)):
item = str(files_content[i]) + "\n"
f.write(item)
# Show the downlodable vector store file and give instruction on upload the vector store file to disk (on HuggingFace)
return gr.File(title="Download your vector store file and upload it into the context_files folder under Files",
value=out_file_name, visible=True)
# overwrites the original method since we don't deal with any vector stores display here
def get_tutor_reply(chat_tutor):
chat_tutor.get_tutor_reply()
return gr.update(value="", interactive=True), chat_tutor.conversation_memory, chat_tutor
def get_conversation_history(chat_tutor):
return chat_tutor.conversation_memory, chat_tutor
# To show the loading process on the button when creating vector store file
def creating_vs_button(obj_in):
return gr.update(interactive=False, value='Creating Vector Store file...')
# To show the loading process on the button when initializing tutor
def initializing_tutor_button(obj_in):
return gr.update(interactive=False, value='Initializing Tutor...')
with gr.Blocks() as ReadingQuiz:
#initialize tutor (with state)
study_tutor = gr.State(SlightlyDelusionalTutor())
# Student chatbot interface
gr.Markdown("""
## Chat with the Model
This is the Blocher Reading Quiz App.
""")
# Instead of ask students to provide key, the key is now provided by the instructor.
api_input = gr.Textbox(show_label=False, type="password", visible=False, value=os.environ.get("OPENAI_API_KEY"))
# The instructor will provide a secret prompt/persona to the tutor
instructor_prompt = gr.Textbox(label="Verify your prompt content", value = os.environ.get("SECRET_PROMPT"), visible=False)
# Show input files
file_input = gr.File(label="Reading materials", value=get_filepaths_from_folder(folder_path), visible=True)
# Show output file for vector store when needed
vs_file_name = gr.Text(visible=False, value=out_file_name)
file_output = gr.File(visible=False)
# Placeholders components
text_input_none = gr.Textbox(visible=False)
file_input_none = gr.File(visible=False)
instructor_input_none = gr.TextArea(visible=False)
learning_objectives_none = gr.Textbox(visible=False)
# Set the secret prompt in this session and embed it to the study tutor
vs_build_button = gr.Button("Initialize Tutor")
vs_build_button.click(
fn=creating_vs_button, inputs=vs_build_button, outputs=vs_build_button
).then(
fn=write_vector_store_to_file, inputs=[vs_file_name], outputs=[file_output]
).then(
fn=initializing_tutor_button, inputs=[vs_build_button], outputs=[vs_build_button]
).then(
fn=create_reference_store,
inputs=[study_tutor, vs_build_button, instructor_prompt, file_output, instructor_input_none, api_input, learning_objectives_none],
outputs=[study_tutor, vs_build_button]
)
with gr.Row(equal_height=True):
with gr.Column(scale=2):
chatbot = gr.Chatbot()
with gr.Row():
user_chat_input = gr.Textbox(label="User input", scale=9)
user_chat_submit = gr.Button("Ask/answer model", scale=1)
# First add user's message to the conversation history
# Then get reply from the tutor and add that to the conversation history
user_chat_submit.click(
fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False
).then(
fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True
)
# User can also press "Enter" on keyboard to submit a message
user_chat_input.submit(
fn = add_user_message, inputs = [user_chat_input, study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=False
).then(
fn = get_tutor_reply, inputs = [study_tutor], outputs = [user_chat_input, chatbot, study_tutor], queue=True
)
# Download conversation history file
with gr.Blocks():
gr.Markdown("""
## Export Your Chat History
Export your chat history as a .json, .txt, or .csv file
""")
with gr.Row():
export_dialogue_button_json = gr.Button("JSON")
export_dialogue_button_txt = gr.Button("TXT")
export_dialogue_button_csv = gr.Button("CSV")
file_download = gr.Files(label="Download here", file_types=['.json', '.txt', '.csv'], type="file", visible=False)
export_dialogue_button_json.click(save_json, study_tutor, file_download, show_progress=True)
export_dialogue_button_txt.click(save_txt, study_tutor, file_download, show_progress=True)
export_dialogue_button_csv.click(save_csv, study_tutor, file_download, show_progress=True)
ReadingQuiz.queue().launch(server_name='0.0.0.0', server_port=7860)