File size: 812 Bytes
67d23d6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
import streamlit as st
from transformers import pipeline
# Instantiating summarization pipeline with the bart-finetuned-samsum model
summarizer = pipeline(task="summarization", model="luisotorres/bart-finetuned-samsum")
# Title
st.title("📝 Text Summarization with BART Model")
# Create a sidebar for input
with st.sidebar:
st.header("Input")
input_text = st.text_area("Enter text for Summarization:")
# Create a button to start the summarization
if st.button("Summarize"):
# If the input box isn't empty, process the input and generate a summary
if input_text:
summary = summarizer(input_text, max_length=1024, min_length=0, do_sample=False)
st.subheader("Summary")
st.write(summary[0]["summary_text"])
else:
st.warning("Enter text for summarization.")
|