File size: 9,187 Bytes
0c131af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
[

            {   "name":"sentence-transformers/all-MiniLM-L6-v2", 
                "model":"sentence-transformers/all-MiniLM-L6-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 3.8  million downloads from Huggingface",
                                 "sota_link":"https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/paraphrase-MiniLM-L6-v2", 
                "model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 2 million downloads from Huggingface",
                                 "sota_link":"https://huggingface.co./sentence-transformers/paraphrase-MiniLM-L6-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/bert-base-nli-mean-tokens", 
                "model":"sentence-transformers/bert-base-nli-mean-tokens",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 700,000 downloads from Huggingface",
                                 "sota_link":"https://huggingface.co./sentence-transformers/bert-base-nli-mean-tokens"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/all-mpnet-base-v2", 
                "model":"sentence-transformers/all-mpnet-base-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 500,000 downloads from Huggingface",
                                 "sota_link":"https://huggingface.co./sentence-transformers/all-mpnet-base-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},
            {   "name":"sentence-transformers/all-MiniLM-L12-v2",
                "model":"sentence-transformers/all-MiniLM-L12-v2",
                "fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
                "orig_author_url":"https://github.com/UKPLab",
                "orig_author":"Ubiquitous Knowledge Processing Lab",
                "sota_info": {   
                                 "task":"Over 500,000 downloads from Huggingface",
                                 "sota_link":"https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2"
                            },
                "paper_url":"https://arxiv.org/abs/1908.10084",
                "mark":"True",
                "class":"HFModel"},

            {   "name":"SGPT-125M", 
                "model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
                "fork_url":"https://github.com/taskswithcode/sgpt",
                "orig_author_url":"https://github.com/Muennighoff",
                "orig_author":"Niklas Muennighoff",
                "sota_info": {   
                                 "task":"#1 in multiple information retrieval & search tasks(smaller variant)",
                                 "sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
                            },
                "paper_url":"https://arxiv.org/abs/2202.08904v5",
                "mark":"True",
                "class":"SGPTModel"},
            {  "name":"SIMCSE-base" ,
                "model":"princeton-nlp/sup-simcse-roberta-base",
                "fork_url":"https://github.com/taskswithcode/SimCSE",
                "orig_author_url":"https://github.com/princeton-nlp",
                "orig_author":"Princeton Natural Language Processing",
                "sota_info": {   
                                 "task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
                                 "sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
                            },
                "paper_url":"https://arxiv.org/abs/2104.08821v4",
                "mark":"True",
                "class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
            {  "name":"GPT-3-175B (text-similarity-davinci-001)" ,
                "model":"text-similarity-davinci-001",
                "fork_url":"https://openai.com/api/",
                "orig_author_url":"https://openai.com/api/",
                "orig_author":"OpenAI",
                "sota_info": {   
                                 "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
                                 "sota_link":"https://paperswithcode.com/method/gpt-3"
                            },
                "paper_url":"https://arxiv.org/abs/2005.14165v4",
                "mark":"True",
                "custom_load":"False",
                "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
                "alt_url":"https://openai.com/api/",
                "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
            {  "name":"GPT-3-6.7B (text-similarity-curie-001)" ,
                "model":"text-similarity-curie-001",
                "fork_url":"https://openai.com/api/",
                "orig_author_url":"https://openai.com/api/",
                "orig_author":"OpenAI",
                "sota_info": {   
                                 "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
                                 "sota_link":"https://paperswithcode.com/method/gpt-3"
                            },
                "paper_url":"https://arxiv.org/abs/2005.14165v4",
                "mark":"True",
                "custom_load":"False",
                "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
                "alt_url":"https://openai.com/api/",
                "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
            {  "name":"GPT-3-1.3B (text-similarity-babbage-001)" ,
                "model":"text-similarity-babbage-001",
                "fork_url":"https://openai.com/api/",
                "orig_author_url":"https://openai.com/api/",
                "orig_author":"OpenAI",
                "sota_info": {   
                                 "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
                                 "sota_link":"https://paperswithcode.com/method/gpt-3"
                            },
                "paper_url":"https://arxiv.org/abs/2005.14165v4",
                "mark":"True",
                "custom_load":"False",
                "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
                "alt_url":"https://openai.com/api/",
                "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
            {  "name":"GPT-3-350M (text-similarity-ada-001)" ,
                "model":"text-similarity-ada-001",
                "fork_url":"https://openai.com/api/",
                "orig_author_url":"https://openai.com/api/",
                "orig_author":"OpenAI",
                "sota_info": {   
                                 "task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
                                 "sota_link":"https://paperswithcode.com/method/gpt-3"
                            },
                "paper_url":"https://arxiv.org/abs/2005.14165v4",
                "mark":"True",
                "custom_load":"False",
                "Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
                "alt_url":"https://openai.com/api/",
                "class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}


            ]