Spaces:
Runtime error
Runtime error
File size: 9,187 Bytes
0c131af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 |
[
{ "name":"sentence-transformers/all-MiniLM-L6-v2",
"model":"sentence-transformers/all-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 3.8 million downloads from Huggingface",
"sota_link":"https://huggingface.co./sentence-transformers/all-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"model":"sentence-transformers/paraphrase-MiniLM-L6-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 2 million downloads from Huggingface",
"sota_link":"https://huggingface.co./sentence-transformers/paraphrase-MiniLM-L6-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/bert-base-nli-mean-tokens",
"model":"sentence-transformers/bert-base-nli-mean-tokens",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 700,000 downloads from Huggingface",
"sota_link":"https://huggingface.co./sentence-transformers/bert-base-nli-mean-tokens"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-mpnet-base-v2",
"model":"sentence-transformers/all-mpnet-base-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co./sentence-transformers/all-mpnet-base-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"sentence-transformers/all-MiniLM-L12-v2",
"model":"sentence-transformers/all-MiniLM-L12-v2",
"fork_url":"https://github.com/taskswithcode/sentence_similarity_hf_model",
"orig_author_url":"https://github.com/UKPLab",
"orig_author":"Ubiquitous Knowledge Processing Lab",
"sota_info": {
"task":"Over 500,000 downloads from Huggingface",
"sota_link":"https://huggingface.co./sentence-transformers/all-MiniLM-L12-v2"
},
"paper_url":"https://arxiv.org/abs/1908.10084",
"mark":"True",
"class":"HFModel"},
{ "name":"SGPT-125M",
"model":"Muennighoff/SGPT-125M-weightedmean-nli-bitfit",
"fork_url":"https://github.com/taskswithcode/sgpt",
"orig_author_url":"https://github.com/Muennighoff",
"orig_author":"Niklas Muennighoff",
"sota_info": {
"task":"#1 in multiple information retrieval & search tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/sgpt-gpt-sentence-embeddings-for-semantic"
},
"paper_url":"https://arxiv.org/abs/2202.08904v5",
"mark":"True",
"class":"SGPTModel"},
{ "name":"SIMCSE-base" ,
"model":"princeton-nlp/sup-simcse-roberta-base",
"fork_url":"https://github.com/taskswithcode/SimCSE",
"orig_author_url":"https://github.com/princeton-nlp",
"orig_author":"Princeton Natural Language Processing",
"sota_info": {
"task":"Within top 10 in multiple semantic textual similarity tasks(smaller variant)",
"sota_link":"https://paperswithcode.com/paper/simcse-simple-contrastive-learning-of"
},
"paper_url":"https://arxiv.org/abs/2104.08821v4",
"mark":"True",
"class":"SimCSEModel","sota_link":"https://paperswithcode.com/sota/semantic-textual-similarity-on-sick"},
{ "name":"GPT-3-175B (text-similarity-davinci-001)" ,
"model":"text-similarity-davinci-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-6.7B (text-similarity-curie-001)" ,
"model":"text-similarity-curie-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-1.3B (text-similarity-babbage-001)" ,
"model":"text-similarity-babbage-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"},
{ "name":"GPT-3-350M (text-similarity-ada-001)" ,
"model":"text-similarity-ada-001",
"fork_url":"https://openai.com/api/",
"orig_author_url":"https://openai.com/api/",
"orig_author":"OpenAI",
"sota_info": {
"task":"GPT-3 achieves strong zero-shot and few-shot performance on many NLP datasets etc.",
"sota_link":"https://paperswithcode.com/method/gpt-3"
},
"paper_url":"https://arxiv.org/abs/2005.14165v4",
"mark":"True",
"custom_load":"False",
"Note":"Custom file upload requires OpenAI API access to create embeddings. For API access, use this link ",
"alt_url":"https://openai.com/api/",
"class":"OpenAIModel","sota_link":"https://arxiv.org/abs/2005.14165v4"}
]
|