File size: 12,932 Bytes
2c7b92a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import math
import torch
import torch.nn as nn
from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present

class CustomLSTM(nn.Module):
    def __init__(self, input_sz, hidden_sz):
        super().__init__()
        self.input_sz = input_sz
        self.hidden_size = hidden_sz
        self.W = nn.Parameter(torch.Tensor(input_sz, hidden_sz * 4))
        self.U = nn.Parameter(torch.Tensor(hidden_sz, hidden_sz * 4))
        self.bias = nn.Parameter(torch.Tensor(hidden_sz * 4))
        self.init_weights()

    def init_weights(self):
        stdv = 1.0 / math.sqrt(self.hidden_size)
        for weight in self.parameters():
            weight.data.uniform_(-stdv, stdv)

    def forward(self, x,
                init_states=None):
        """Assumes x is of shape (batch, sequence, feature)"""
        #print(type(x))
        #print(x.shape)
        bs, seq_sz, _ = x.size()
        hidden_seq = []
        if init_states is None:
            h_t, c_t = (torch.zeros(bs, self.hidden_size).to(x.device),
                        torch.zeros(bs, self.hidden_size).to(x.device))
        else:
            h_t, c_t = init_states

        HS = self.hidden_size
        for t in range(seq_sz):
            x_t = x[:, t, :]
            # batch the computations into a single matrix multiplication
            gates = x_t @ self.W + h_t @ self.U + self.bias
            i_t, f_t, g_t, o_t = (
                torch.sigmoid(gates[:, :HS]), # input
                torch.sigmoid(gates[:, HS:HS*2]), # forget
                torch.tanh(gates[:, HS*2:HS*3]),
                torch.sigmoid(gates[:, HS*3:]), # output
            )
            c_t = f_t * c_t + i_t * g_t
            h_t = o_t * torch.tanh(c_t)
            hidden_seq.append(h_t.unsqueeze(0))
        hidden_seq = torch.cat(hidden_seq, dim=0)
        # reshape from shape (sequence, batch, feature) to (batch, sequence, feature)
        hidden_seq = hidden_seq.transpose(0, 1).contiguous()
        return hidden_seq, (h_t, c_t)

hparams = {
        'n_mel_channels': 128,  # From LogMelSpectrogram
        'postnet_embedding_dim': 512,  # Common choice, adjust as needed
        'postnet_kernel_size': 5,  # Common choice, adjust as needed
        'postnet_n_convolutions': 5,  # Typical number of Postnet convolutions
    }

class ConvNorm(torch.nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
                 padding=None, dilation=1, bias=True, w_init_gain='linear'):
        super(ConvNorm, self).__init__()
        if padding is None:
            assert(kernel_size % 2 == 1)
            padding = int(dilation * (kernel_size - 1) / 2)

        self.conv = torch.nn.Conv1d(in_channels, out_channels,
                                    kernel_size=kernel_size, stride=stride,
                                    padding=padding, dilation=dilation,
                                    bias=bias)

        torch.nn.init.xavier_uniform_(
            self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain))

    def forward(self, signal):
        conv_signal = self.conv(signal)
        return conv_signal

URLS = {
    "hubert-discrete": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-discrete-d49e1c77.pt",
    "hubert-soft": "https://github.com/bshall/acoustic-model/releases/download/v0.1/hubert-soft-0321fd7e.pt",
}


class AcousticModel(nn.Module):
    def __init__(self, discrete: bool = False, upsample: bool = True, use_custom_lstm=False):
        super().__init__()
        # self.spk_projection = nn.Linear(512+512, 512)
        self.encoder = Encoder(discrete, upsample)
        self.decoder = Decoder(use_custom_lstm=use_custom_lstm)
        self.postnet = Postnet(hparams)  # Add this line. Ensure hparams is defined or pass explicit parameters

    def forward(self, x: torch.Tensor, spk_embs, mels: torch.Tensor) -> torch.Tensor:
        x = self.encoder(x)
        exp_spk_embs = spk_embs.unsqueeze(1).expand(-1, x.size(1), -1)
        concat_x = torch.cat([x, exp_spk_embs], dim=-1)
        # x = self.spk_projection(concat_x)
        output = self.decoder(concat_x, mels)
        postnet_output = self.postnet(output) + output
        return postnet_output

    #def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor:
    #    x = self.encoder(x)
    #    return self.decoder(x, mels)

    def forward_test(self, x, spk_embs, mels):
      print('x shape', x.shape)
      print('se shape', spk_embs.shape)
      print('mels shape', mels.shape)
      x = self.encoder(x)
      print('x_enc shape', x.shape)
      return

    @torch.inference_mode()
    def generate(self, x: torch.Tensor, spk_embs) -> torch.Tensor:
        x = self.encoder(x)
        exp_spk_embs = spk_embs.unsqueeze(1).expand(-1, x.size(1), -1)
        concat_x = torch.cat([x, exp_spk_embs], dim=-1)
        # x = self.spk_projection(concat_x)
        mels = self.decoder.generate(concat_x)
        postnet_mels = self.postnet(mels) + mels
        return postnet_mels


class Encoder(nn.Module):
    def __init__(self, discrete: bool = False, upsample: bool = True):
        super().__init__()
        self.embedding = nn.Embedding(100 + 1, 256) if discrete else None
        self.prenet = PreNet(256, 256, 256)
        self.convs = nn.Sequential(
            nn.Conv1d(256, 512, 5, 1, 2),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.InstanceNorm1d(512),
            nn.ConvTranspose1d(512, 512, 4, 2, 1) if upsample else nn.Identity(),
            nn.Dropout(0.3),
            nn.Conv1d(512, 512, 5, 1, 2),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.InstanceNorm1d(512),
            nn.Conv1d(512, 512, 5, 1, 2),
            nn.ReLU(),
            nn.Dropout(0.3),
            nn.InstanceNorm1d(512),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        if self.embedding is not None:
            x = self.embedding(x)
        x = self.prenet(x)
        x = self.convs(x.transpose(1, 2))
        return x.transpose(1, 2)


class Decoder(nn.Module):
    def __init__(self, use_custom_lstm=False):
        super().__init__()
        self.use_custom_lstm = use_custom_lstm
        self.prenet = PreNet(128, 256, 256)
        if use_custom_lstm:
          self.lstm1 = CustomLSTM(1024 + 256, 1024)
          self.lstm2 = CustomLSTM(1024, 1024)
          self.lstm3 = CustomLSTM(1024, 1024)
        else:
          self.lstm1 = nn.LSTM(1024 + 256, 1024)
          self.lstm2 = nn.LSTM(1024, 1024)
          self.lstm3 = nn.LSTM(1024, 1024)
        self.proj = nn.Linear(1024, 128, bias=False)
        self.dropout = nn.Dropout(0.3)

    def forward(self, x: torch.Tensor, mels: torch.Tensor) -> torch.Tensor:
        mels = self.prenet(mels)
        x, _ = self.lstm1(torch.cat((x, mels), dim=-1))
        x = self.dropout(x)
        res = x
        x, _ = self.lstm2(x)
        x = self.dropout(x)
        x = res + x
        res = x
        x, _ = self.lstm3(x)
        x = self.dropout(x)
        x = res + x
        return self.proj(x)

    @torch.inference_mode()
    def generate(self, xs: torch.Tensor) -> torch.Tensor:
        m = torch.zeros(xs.size(0), 128, device=xs.device)
        if self.use_custom_lstm:
          h1 = torch.zeros(xs.size(0), 1024, device=xs.device)
          c1 = torch.zeros(xs.size(0), 1024, device=xs.device)
          h2 = torch.zeros(xs.size(0), 1024, device=xs.device)
          c2 = torch.zeros(xs.size(0), 1024, device=xs.device)
          h3 = torch.zeros(xs.size(0), 1024, device=xs.device)
          c3 = torch.zeros(xs.size(0), 1024, device=xs.device)
        else:
          h1 = torch.zeros(1, xs.size(0), 1024, device=xs.device)
          c1 = torch.zeros(1, xs.size(0), 1024, device=xs.device)
          h2 = torch.zeros(1, xs.size(0), 1024, device=xs.device)
          c2 = torch.zeros(1, xs.size(0), 1024, device=xs.device)
          h3 = torch.zeros(1, xs.size(0), 1024, device=xs.device)
          c3 = torch.zeros(1, xs.size(0), 1024, device=xs.device)


        mel = []
        for x in torch.unbind(xs, dim=1):
            m = self.prenet(m)
            x = torch.cat((x, m), dim=1).unsqueeze(1)
            x1, (h1, c1) = self.lstm1(x, (h1, c1))
            x2, (h2, c2) = self.lstm2(x1, (h2, c2))
            x = x1 + x2
            x3, (h3, c3) = self.lstm3(x, (h3, c3))
            x = x + x3
            m = self.proj(x).squeeze(1)
            mel.append(m)
        return torch.stack(mel, dim=1)


class PreNet(nn.Module):
    def __init__(
        self,
        input_size: int,
        hidden_size: int,
        output_size: int,
        dropout: float = 0.5,
    ):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(input_size, hidden_size),
            nn.ReLU(),
            nn.Dropout(dropout),
            nn.Linear(hidden_size, output_size),
            nn.ReLU(),
            nn.Dropout(dropout),
        )

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.net(x)


def _acoustic(
    name: str,
    discrete: bool,
    upsample: bool,
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    acoustic = AcousticModel(discrete, upsample)
    if pretrained:
        checkpoint = torch.hub.load_state_dict_from_url(URLS[name], progress=progress)
        consume_prefix_in_state_dict_if_present(checkpoint["acoustic-model"], "module.")
        acoustic.load_state_dict(checkpoint["acoustic-model"])
        acoustic.eval()
    return acoustic


def hubert_discrete(
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    r"""HuBERT-Discrete acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
    Args:
        pretrained (bool): load pretrained weights into the model
        progress (bool): show progress bar when downloading model
    """
    return _acoustic(
        "hubert-discrete",
        discrete=True,
        upsample=True,
        pretrained=pretrained,
        progress=progress,
    )


def hubert_soft(
    pretrained: bool = True,
    progress: bool = True,
) -> AcousticModel:
    r"""HuBERT-Soft acoustic model from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
    Args:
        pretrained (bool): load pretrained weights into the model
        progress (bool): show progress bar when downloading model
    """
    return _acoustic(
        "hubert-soft",
        discrete=False,
        upsample=True,
        pretrained=pretrained,
        progress=progress,
    )

class Postnet(nn.Module):
    def __init__(self, hparams):
        super(Postnet, self).__init__()
        self.convolutions = nn.ModuleList()

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(in_channels=hparams['n_mel_channels'],  # Adjusted input channels
                         out_channels=hparams['postnet_embedding_dim'],  # Output channels remain the same
                         kernel_size=hparams['postnet_kernel_size'], stride=1,
                         padding=int((hparams['postnet_kernel_size'] - 1) / 2),  # Dynamic padding
                         dilation=1, bias=True, w_init_gain='tanh'),
                nn.BatchNorm1d(hparams['postnet_embedding_dim'])
            )
        )

        for i in range(1, hparams['postnet_n_convolutions'] - 1):
            self.convolutions.append(
                nn.Sequential(
                    ConvNorm(hparams['postnet_embedding_dim'],
                             hparams['postnet_embedding_dim'],
                             kernel_size=hparams['postnet_kernel_size'], stride=1,
                             padding=int((hparams['postnet_kernel_size'] - 1) / 2),  # Dynamic padding
                             dilation=1, w_init_gain='tanh'),
                    nn.BatchNorm1d(hparams['postnet_embedding_dim'])
                )
            )

        self.convolutions.append(
            nn.Sequential(
                ConvNorm(hparams['postnet_embedding_dim'], hparams['n_mel_channels'],
                         kernel_size=hparams['postnet_kernel_size'], stride=1,
                         padding=int((hparams['postnet_kernel_size'] - 1) / 2),  # Dynamic padding
                         dilation=1, w_init_gain='linear'),
                nn.BatchNorm1d(hparams['n_mel_channels'])
            )
        )

    def forward(self, x):
        #print(f"Input shape to Postnet: {x.shape}")
        x = x.transpose(1, 2)
        for i, conv in enumerate(self.convolutions[:-1]):
            x = conv(x)
            #print(f"Shape after Convolution {i+1}: {x.shape}")
            x = torch.tanh(x)
            x = F.dropout(x, 0.5, self.training)

        # Last layer
        x = self.convolutions[-1](x)
        #print(f"Shape after last Convolution: {x.shape}")
        x = F.dropout(x, 0.5, self.training)
        x = x.transpose(1, 2)

        return x