waveformer / dcc_tf.py
bandhav's picture
Refactored source
2db9aa5
raw
history blame
17.3 kB
import math
from collections import OrderedDict
from typing import Optional
from torch import Tensor
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchmetrics.functional import(
scale_invariant_signal_noise_ratio as si_snr,
signal_noise_ratio as snr,
signal_distortion_ratio as sdr,
scale_invariant_signal_distortion_ratio as si_sdr)
from speechbrain.lobes.models.transformer.Transformer import PositionalEncoding
def mod_pad(x, chunk_size, pad):
# Mod pad the input to perform integer number of
# inferences
mod = 0
if (x.shape[-1] % chunk_size) != 0:
mod = chunk_size - (x.shape[-1] % chunk_size)
x = F.pad(x, (0, mod))
x = F.pad(x, pad)
return x, mod
class LayerNormPermuted(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super(LayerNormPermuted, self).__init__(*args, **kwargs)
def forward(self, x):
"""
Args:
x: [B, C, T]
"""
x = x.permute(0, 2, 1) # [B, T, C]
x = super().forward(x)
x = x.permute(0, 2, 1) # [B, C, T]
return x
class DepthwiseSeparableConv(nn.Module):
"""
Depthwise separable convolutions
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation):
super(DepthwiseSeparableConv, self).__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_channels, in_channels, kernel_size, stride,
padding, groups=in_channels, dilation=dilation),
LayerNormPermuted(in_channels),
nn.ReLU(),
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1,
padding=0),
LayerNormPermuted(out_channels),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
class DilatedCausalConvEncoder(nn.Module):
"""
A dilated causal convolution based encoder for encoding
time domain audio input into latent space.
"""
def __init__(self, channels, num_layers, kernel_size=3):
super(DilatedCausalConvEncoder, self).__init__()
self.channels = channels
self.num_layers = num_layers
self.kernel_size = kernel_size
# Compute buffer lengths for each layer
# buf_length[i] = (kernel_size - 1) * dilation[i]
self.buf_lengths = [(kernel_size - 1) * 2**i
for i in range(num_layers)]
# Compute buffer start indices for each layer
self.buf_indices = [0]
for i in range(num_layers - 1):
self.buf_indices.append(
self.buf_indices[-1] + self.buf_lengths[i])
# Dilated causal conv layers aggregate previous context to obtain
# contexful encoded input.
_dcc_layers = OrderedDict()
for i in range(num_layers):
dcc_layer = DepthwiseSeparableConv(
channels, channels, kernel_size=3, stride=1,
padding=0, dilation=2**i)
_dcc_layers.update({'dcc_%d' % i: dcc_layer})
self.dcc_layers = nn.Sequential(_dcc_layers)
def init_ctx_buf(self, batch_size, device):
"""
Returns an initialized context buffer for a given batch size.
"""
return torch.zeros(
(batch_size, self.channels,
(self.kernel_size - 1) * (2**self.num_layers - 1)),
device=device)
def forward(self, x, ctx_buf):
"""
Encodes input audio `x` into latent space, and aggregates
contextual information in `ctx_buf`. Also generates new context
buffer with updated context.
Args:
x: [B, in_channels, T]
Input multi-channel audio.
ctx_buf: {[B, channels, self.buf_length[0]], ...}
A list of tensors holding context for each dilation
causal conv layer. (len(ctx_buf) == self.num_layers)
Returns:
ctx_buf: {[B, channels, self.buf_length[0]], ...}
Updated context buffer with output as the
last element.
"""
T = x.shape[-1] # Sequence length
for i in range(self.num_layers):
buf_start_idx = self.buf_indices[i]
buf_end_idx = self.buf_indices[i] + self.buf_lengths[i]
# DCC input: concatenation of current output and context
dcc_in = torch.cat(
(ctx_buf[..., buf_start_idx:buf_end_idx], x), dim=-1)
# Push current output to the context buffer
ctx_buf[..., buf_start_idx:buf_end_idx] = \
dcc_in[..., -self.buf_lengths[i]:]
# Residual connection
x = x + self.dcc_layers[i](dcc_in)
return x, ctx_buf
class CausalTransformerDecoderLayer(torch.nn.TransformerDecoderLayer):
"""
Adapted from:
"https://github.com/alexmt-scale/causal-transformer-decoder/blob/"
"0caf6ad71c46488f76d89845b0123d2550ef792f/"
"causal_transformer_decoder/model.py#L77"
"""
def forward(
self,
tgt: Tensor,
memory: Optional[Tensor] = None,
chunk_size: int = 1
) -> Tensor:
tgt_last_tok = tgt[:, -chunk_size:, :]
# self attention part
tmp_tgt, sa_map = self.self_attn(
tgt_last_tok,
tgt,
tgt,
attn_mask=None, # not needed because we only care about the last token
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout1(tmp_tgt)
tgt_last_tok = self.norm1(tgt_last_tok)
# encoder-decoder attention
if memory is not None:
tmp_tgt, ca_map = self.multihead_attn(
tgt_last_tok,
memory,
memory,
attn_mask=None, # Attend to the entire chunk
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout2(tmp_tgt)
tgt_last_tok = self.norm2(tgt_last_tok)
# final feed-forward network
tmp_tgt = self.linear2(
self.dropout(self.activation(self.linear1(tgt_last_tok)))
)
tgt_last_tok = tgt_last_tok + self.dropout3(tmp_tgt)
tgt_last_tok = self.norm3(tgt_last_tok)
return tgt_last_tok, sa_map, ca_map
class CausalTransformerDecoder(nn.Module):
"""
A casual transformer decoder which decodes input vectors using
precisely `ctx_len` past vectors in the sequence, and using no future
vectors at all.
"""
def __init__(self, model_dim, ctx_len, chunk_size, num_layers,
nhead, use_pos_enc, ff_dim):
super(CausalTransformerDecoder, self).__init__()
self.num_layers = num_layers
self.model_dim = model_dim
self.ctx_len = ctx_len
self.chunk_size = chunk_size
self.nhead = nhead
self.use_pos_enc = use_pos_enc
self.unfold = nn.Unfold(kernel_size=(ctx_len + chunk_size, 1), stride=chunk_size)
self.pos_enc = PositionalEncoding(model_dim, max_len=200)
self.tf_dec_layers = nn.ModuleList([CausalTransformerDecoderLayer(
d_model=model_dim, nhead=nhead, dim_feedforward=ff_dim,
batch_first=True) for _ in range(num_layers)])
def init_ctx_buf(self, batch_size, device):
return torch.zeros(
(batch_size, self.num_layers + 1, self.ctx_len, self.model_dim),
device=device)
def _causal_unfold(self, x):
"""
Unfolds the sequence into a batch of sequences
prepended with `ctx_len` previous values.
Args:
x: [B, ctx_len + L, C]
ctx_len: int
Returns:
[B * L, ctx_len + 1, C]
"""
B, T, C = x.shape
x = x.permute(0, 2, 1) # [B, C, ctx_len + L]
x = self.unfold(x.unsqueeze(-1)) # [B, C * (ctx_len + chunk_size), -1]
x = x.permute(0, 2, 1)
x = x.reshape(B, -1, C, self.ctx_len + self.chunk_size)
x = x.reshape(-1, C, self.ctx_len + self.chunk_size)
x = x.permute(0, 2, 1)
return x
def forward(self, tgt, mem, ctx_buf, probe=False):
"""
Args:
x: [B, model_dim, T]
ctx_buf: [B, num_layers, model_dim, ctx_len]
"""
mem, _ = mod_pad(mem, self.chunk_size, (0, 0))
tgt, mod = mod_pad(tgt, self.chunk_size, (0, 0))
# Input sequence length
B, C, T = tgt.shape
tgt = tgt.permute(0, 2, 1)
mem = mem.permute(0, 2, 1)
# Prepend mem with the context
mem = torch.cat((ctx_buf[:, 0, :, :], mem), dim=1)
ctx_buf[:, 0, :, :] = mem[:, -self.ctx_len:, :]
mem_ctx = self._causal_unfold(mem)
if self.use_pos_enc:
mem_ctx = mem_ctx + self.pos_enc(mem_ctx)
# Attention chunk size: required to ensure the model
# wouldn't trigger an out-of-memory error when working
# on long sequences.
K = 1000
for i, tf_dec_layer in enumerate(self.tf_dec_layers):
# Update the tgt with context
tgt = torch.cat((ctx_buf[:, i + 1, :, :], tgt), dim=1)
ctx_buf[:, i + 1, :, :] = tgt[:, -self.ctx_len:, :]
# Compute encoded output
tgt_ctx = self._causal_unfold(tgt)
if self.use_pos_enc and i == 0:
tgt_ctx = tgt_ctx + self.pos_enc(tgt_ctx)
tgt = torch.zeros_like(tgt_ctx)[:, -self.chunk_size:, :]
for i in range(int(math.ceil(tgt.shape[0] / K))):
tgt[i*K:(i+1)*K], _sa_map, _ca_map = tf_dec_layer(
tgt_ctx[i*K:(i+1)*K], mem_ctx[i*K:(i+1)*K],
self.chunk_size)
tgt = tgt.reshape(B, T, C)
tgt = tgt.permute(0, 2, 1)
if mod != 0:
tgt = tgt[..., :-mod]
return tgt, ctx_buf
class MaskNet(nn.Module):
def __init__(self, enc_dim, num_enc_layers, dec_dim, dec_buf_len,
dec_chunk_size, num_dec_layers, use_pos_enc, skip_connection, proj):
super(MaskNet, self).__init__()
self.skip_connection = skip_connection
self.proj = proj
# Encoder based on dilated causal convolutions.
self.encoder = DilatedCausalConvEncoder(channels=enc_dim,
num_layers=num_enc_layers)
# Project between encoder and decoder dimensions
self.proj_e2d_e = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_e2d_l = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_d2e = nn.Sequential(
nn.Conv1d(dec_dim, enc_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
# Transformer decoder that operates on chunks of size
# buffer size.
self.decoder = CausalTransformerDecoder(
model_dim=dec_dim, ctx_len=dec_buf_len, chunk_size=dec_chunk_size,
num_layers=num_dec_layers, nhead=8, use_pos_enc=use_pos_enc,
ff_dim=2 * dec_dim)
def forward(self, x, l, enc_buf, dec_buf):
"""
Generates a mask based on encoded input `e` and the one-hot
label `label`.
Args:
x: [B, C, T]
Input audio sequence
l: [B, C]
Label embedding
ctx_buf: {[B, C, <receptive field of the layer>], ...}
List of context buffers maintained by DCC encoder
"""
# Enocder the label integrated input
e, enc_buf = self.encoder(x, enc_buf)
# Label integration
l = l.unsqueeze(2) * e
# Project to `dec_dim` dimensions
if self.proj:
e = self.proj_e2d_e(e)
m = self.proj_e2d_l(l)
# Cross-attention to predict the mask
m, dec_buf = self.decoder(m, e, dec_buf)
else:
# Cross-attention to predict the mask
m, dec_buf = self.decoder(l, e, dec_buf)
# Project mask to encoder dimensions
if self.proj:
m = self.proj_d2e(m)
# Final mask after residual connection
if self.skip_connection:
m = l + m
return m, enc_buf, dec_buf
class Net(nn.Module):
def __init__(self, label_len, L=8,
enc_dim=512, num_enc_layers=10,
dec_dim=256, dec_buf_len=100, num_dec_layers=2,
dec_chunk_size=72, out_buf_len=2,
use_pos_enc=True, skip_connection=True, proj=True, lookahead=True):
super(Net, self).__init__()
self.L = L
self.out_buf_len = out_buf_len
self.enc_dim = enc_dim
self.lookahead = lookahead
# Input conv to convert input audio to a latent representation
kernel_size = 3 * L if lookahead else L
self.in_conv = nn.Sequential(
nn.Conv1d(in_channels=1,
out_channels=enc_dim, kernel_size=kernel_size, stride=L,
padding=0, bias=False),
nn.ReLU())
# Label embedding layer
self.label_embedding = nn.Sequential(
nn.Linear(label_len, 512),
nn.LayerNorm(512),
nn.ReLU(),
nn.Linear(512, enc_dim),
nn.LayerNorm(enc_dim),
nn.ReLU())
# Mask generator
self.mask_gen = MaskNet(
enc_dim=enc_dim, num_enc_layers=num_enc_layers,
dec_dim=dec_dim, dec_buf_len=dec_buf_len,
dec_chunk_size=dec_chunk_size, num_dec_layers=num_dec_layers,
use_pos_enc=use_pos_enc, skip_connection=skip_connection, proj=proj)
# Output conv layer
self.out_conv = nn.Sequential(
nn.ConvTranspose1d(
in_channels=enc_dim, out_channels=1,
kernel_size=(out_buf_len + 1) * L,
stride=L,
padding=out_buf_len * L, bias=False),
nn.Tanh())
def init_buffers(self, batch_size, device):
enc_buf = self.mask_gen.encoder.init_ctx_buf(batch_size, device)
dec_buf = self.mask_gen.decoder.init_ctx_buf(batch_size, device)
out_buf = torch.zeros(batch_size, self.enc_dim, self.out_buf_len,
device=device)
return enc_buf, dec_buf, out_buf
def forward(self, x, label, init_enc_buf=None, init_dec_buf=None,
init_out_buf=None, pad=True):
"""
Extracts the audio corresponding to the `label` in the given
`mixture`. Generates `chunk_size` samples per iteration.
Args:
mixed: [B, n_mics, T]
input audio mixture
label: [B, num_labels]
one hot label
Returns:
out: [B, n_spk, T]
extracted audio with sounds corresponding to the `label`
"""
mod = 0
if pad:
pad_size = (self.L, self.L) if self.lookahead else (0, 0)
x, mod = mod_pad(x, chunk_size=self.L, pad=pad_size)
if init_enc_buf is None or init_dec_buf is None or init_out_buf is None:
assert init_enc_buf is None and \
init_dec_buf is None and \
init_out_buf is None, \
"Both buffers have to initialized, or " \
"both of them have to be None."
enc_buf, dec_buf, out_buf = self.init_buffers(
x.shape[0], x.device)
else:
enc_buf, dec_buf, out_buf = \
init_enc_buf, init_dec_buf, init_out_buf
# Generate latent space representation of the input
x = self.in_conv(x)
# Generate label embedding
l = self.label_embedding(label) # [B, label_len] --> [B, channels]
# Generate mask corresponding to the label
m, enc_buf, dec_buf = self.mask_gen(x, l, enc_buf, dec_buf)
# Apply mask and decode
x = x * m
x = torch.cat((out_buf, x), dim=-1)
out_buf = x[..., -self.out_buf_len:]
x = self.out_conv(x)
# Remove mod padding, if present.
if mod != 0:
x = x[:, :, :-mod]
if init_enc_buf is None:
return x
else:
return x, enc_buf, dec_buf, out_buf
# Define optimizer, loss and metrics
def optimizer(model, data_parallel=False, **kwargs):
return optim.Adam(model.parameters(), **kwargs)
def loss(pred, tgt):
return -0.9 * snr(pred, tgt).mean() - 0.1 * si_snr(pred, tgt).mean()
def metrics(mixed, output, gt):
""" Function to compute metrics """
metrics = {}
def metric_i(metric, src, pred, tgt):
_vals = []
for s, t, p in zip(src, tgt, pred):
_vals.append((metric(p, t) - metric(s, t)).cpu().item())
return _vals
for m_fn in [snr, si_snr]:
metrics[m_fn.__name__] = metric_i(m_fn,
mixed[:, :gt.shape[1], :],
output,
gt)
return metrics