Spaces:
Runtime error
Runtime error
File size: 11,869 Bytes
e6a6383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 |
"""
The main training script for training on synthetic data
"""
import argparse
import multiprocessing
import os
import logging
from pathlib import Path
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm # pylint: disable=unused-import
from torchmetrics.functional import(
scale_invariant_signal_noise_ratio as si_snr,
signal_noise_ratio as snr,
signal_distortion_ratio as sdr,
scale_invariant_signal_distortion_ratio as si_sdr)
from src.helpers import utils
from src.training.eval import test_epoch
from src.training.synthetic_dataset import FSDSoundScapesDataset as Dataset
from src.training.synthetic_dataset import tensorboard_add_sample
def train_epoch(model: nn.Module, device: torch.device,
optimizer: optim.Optimizer,
train_loader: torch.utils.data.dataloader.DataLoader,
n_items: int, epoch: int = 0,
writer: SummaryWriter = None, data_params = None) -> float:
"""
Train a single epoch.
"""
# Set the model to training.
model.train()
# Training loop
losses = []
metrics = {}
with tqdm(total=len(train_loader), desc='Train', ncols=100) as t:
for batch_idx, (mixed, label, gt) in enumerate(train_loader):
mixed = mixed.to(device)
label = label.to(device)
gt = gt.to(device)
# Reset grad
optimizer.zero_grad()
# Run through the model
output = model(mixed, label)
# Compute loss
loss = network.loss(output, gt)
losses.append(loss.item())
# Backpropagation
loss.backward()
# Gradient clipping
torch.nn.utils.clip_grad_norm_(model.parameters(), 0.5)
# Update the weights
optimizer.step()
metrics_batch = network.metrics(mixed.detach(), output.detach(),
gt.detach())
for k in metrics_batch.keys():
if not k in metrics:
metrics[k] = metrics_batch[k]
else:
metrics[k] += metrics_batch[k]
if writer is not None and batch_idx == 0:
tensorboard_add_sample(
writer, tag='Train',
sample=(mixed.detach()[:8], label.detach()[:8],
gt.detach()[:8], output.detach()[:8]),
step=epoch, params=data_params)
# Show current loss in the progress meter
t.set_postfix(loss='%.05f'%loss.item())
t.update()
if n_items is not None and batch_idx == n_items:
break
avg_metrics = {k: np.mean(metrics[k]) for k in metrics.keys()}
avg_metrics['loss'] = np.mean(losses)
avg_metrics_str = "Train:"
for m in avg_metrics.keys():
avg_metrics_str += ' %s=%.04f' % (m, avg_metrics[m])
logging.info(avg_metrics_str)
return avg_metrics
def train(args: argparse.Namespace):
"""
Train the network.
"""
# Load dataset
data_train = Dataset(**args.train_data)
logging.info("Loaded train dataset at %s containing %d elements" %
(args.train_data['input_dir'], len(data_train)))
data_val = Dataset(**args.val_data)
logging.info("Loaded test dataset at %s containing %d elements" %
(args.val_data['input_dir'], len(data_val)))
# Set up the device and workers.
use_cuda = args.use_cuda and torch.cuda.is_available()
if use_cuda:
gpu_ids = args.gpu_ids if args.gpu_ids is not None\
else range(torch.cuda.device_count())
device_ids = [_ for _ in gpu_ids]
data_parallel = len(device_ids) > 1
device = 'cuda:%d' % device_ids[0]
torch.cuda.set_device(device_ids[0])
logging.info("Using CUDA devices: %s" % str(device_ids))
else:
data_parallel = False
device = torch.device('cpu')
logging.info("Using device: CPU")
# Set multiprocessing params
num_workers = min(multiprocessing.cpu_count(), args.n_workers)
kwargs = {
'num_workers': num_workers,
'pin_memory': True
} if use_cuda else {}
# Set up data loaders
#print(args.batch_size, args.eval_batch_size)
train_loader = torch.utils.data.DataLoader(data_train,
batch_size=args.batch_size,
shuffle=True, **kwargs)
val_loader = torch.utils.data.DataLoader(data_val,
batch_size=args.eval_batch_size,
**kwargs)
# Set up model
model = network.Net(**args.model_params)
# Add graph to tensorboard with example train samples
# _mixed, _label, _ = next(iter(val_loader))
# args.writer.add_graph(model, (_mixed, _label))
if use_cuda and data_parallel:
model = nn.DataParallel(model, device_ids=device_ids)
logging.info("Using data parallel model")
model.to(device)
# Set up the optimizer
logging.info("Initializing optimizer with %s" % str(args.optim))
optimizer = network.optimizer(model, **args.optim, data_parallel=data_parallel)
logging.info('Learning rates initialized to:' + utils.format_lr_info(optimizer))
lr_scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer, **args.lr_sched)
logging.info("Initialized LR scheduler with params: fix_lr_epochs=%d %s"
% (args.fix_lr_epochs, str(args.lr_sched)))
base_metric = args.base_metric
train_metrics = {}
val_metrics = {}
# Load the model if `args.start_epoch` is greater than 0. This will load the
# model from epoch = `args.start_epoch - 1`
assert args.start_epoch >=0, "start_epoch must be greater than 0."
if args.start_epoch > 0:
checkpoint_path = os.path.join(args.exp_dir,
'%d.pt' % (args.start_epoch - 1))
_, train_metrics, val_metrics = utils.load_checkpoint(
checkpoint_path, model, optim=optimizer, lr_sched=lr_scheduler,
data_parallel=data_parallel)
logging.info("Loaded checkpoint from %s" % checkpoint_path)
logging.info("Learning rates restored to:" + utils.format_lr_info(optimizer))
# Training loop
try:
torch.autograd.set_detect_anomaly(args.detect_anomaly)
for epoch in range(args.start_epoch, args.epochs + 1):
logging.info("Epoch %d:" % epoch)
checkpoint_file = os.path.join(args.exp_dir, '%d.pt' % epoch)
assert not os.path.exists(checkpoint_file), \
"Checkpoint file %s already exists" % checkpoint_file
#print("---- begin trianivg")
curr_train_metrics = train_epoch(model, device, optimizer,
train_loader, args.n_train_items,
epoch=epoch, writer=args.writer,
data_params=args.train_data)
#raise KeyboardInterrupt
curr_test_metrics = test_epoch(model, device, val_loader,
args.n_test_items, network.loss,
network.metrics, epoch=epoch,
writer=args.writer,
data_params=args.val_data)
# LR scheduler
if epoch >= args.fix_lr_epochs:
lr_scheduler.step(curr_test_metrics[base_metric])
logging.info(
"LR after scheduling step: %s" %
[_['lr'] for _ in optimizer.param_groups])
# Write metrics to tensorboard
args.writer.add_scalars('Train', curr_train_metrics, epoch)
args.writer.add_scalars('Val', curr_test_metrics, epoch)
args.writer.flush()
for k in curr_train_metrics.keys():
if not k in train_metrics:
train_metrics[k] = [curr_train_metrics[k]]
else:
train_metrics[k].append(curr_train_metrics[k])
for k in curr_test_metrics.keys():
if not k in val_metrics:
val_metrics[k] = [curr_test_metrics[k]]
else:
val_metrics[k].append(curr_test_metrics[k])
if max(val_metrics[base_metric]) == val_metrics[base_metric][-1]:
logging.info("Found best validation %s!" % base_metric)
utils.save_checkpoint(
checkpoint_file, epoch, model, optimizer, lr_scheduler,
train_metrics, val_metrics, data_parallel)
logging.info("Saved checkpoint at %s" % checkpoint_file)
utils.save_graph(train_metrics, val_metrics, args.exp_dir)
return train_metrics, val_metrics
except KeyboardInterrupt:
print("Interrupted")
except Exception as _: # pylint: disable=broad-except
import traceback # pylint: disable=import-outside-toplevel
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data Params
parser.add_argument('exp_dir', type=str,
default='./experiments/fsd_mask_label_mult',
help="Path to save checkpoints and logs.")
parser.add_argument('--n_train_items', type=int, default=None,
help="Number of items to train on in each epoch")
parser.add_argument('--n_test_items', type=int, default=None,
help="Number of items to test.")
parser.add_argument('--start_epoch', type=int, default=0,
help="Start epoch")
parser.add_argument('--pretrain_path', type=str,
help="Path to pretrained weights")
parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
help="Whether to use cuda")
parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
help="List of GPU ids used for training. "
"Eg., --gpu_ids 2 4. All GPUs are used by default.")
parser.add_argument('--detect_anomaly', dest='detect_anomaly',
action='store_true',
help="Whether to use cuda")
parser.add_argument('--wandb', dest='wandb', action='store_true',
help="Whether to sync tensorboard to wandb")
args = parser.parse_args()
# Set the random seed for reproducible experiments
torch.manual_seed(230)
random.seed(230)
np.random.seed(230)
if args.use_cuda:
torch.cuda.manual_seed(230)
# Set up checkpoints
if not os.path.exists(args.exp_dir):
os.makedirs(args.exp_dir)
utils.set_logger(os.path.join(args.exp_dir, 'train.log'))
# Load model and training params
params = utils.Params(os.path.join(args.exp_dir, 'config.json'))
for k, v in params.__dict__.items():
vars(args)[k] = v
# Initialize tensorboard writer
tensorboard_dir = os.path.join(args.exp_dir, 'tensorboard')
args.writer = SummaryWriter(tensorboard_dir, purge_step=args.start_epoch)
if args.wandb:
import wandb
wandb.init(
project='Semaudio', sync_tensorboard=True,
dir=tensorboard_dir, name=os.path.basename(args.exp_dir))
exec("import %s as network" % args.model)
logging.info("Imported the model from '%s'." % args.model)
train(args)
args.writer.close()
if args.wandb:
wandb.finish()
|