Spaces:
Runtime error
Runtime error
File size: 8,223 Bytes
e6a6383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 |
"""
Test script to evaluate the model.
"""
import argparse
import importlib
import multiprocessing
import os, glob
import logging
import numpy as np
import torch
import pandas as pd
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.profiler import profile, record_function, ProfilerActivity
from tqdm import tqdm # pylint: disable=unused-import
from torchmetrics.functional import(
scale_invariant_signal_noise_ratio as si_snr,
signal_noise_ratio as snr,
signal_distortion_ratio as sdr,
scale_invariant_signal_distortion_ratio as si_sdr)
from src.helpers import utils
from src.training.synthetic_dataset import FSDSoundScapesDataset, tensorboard_add_metrics
from src.training.synthetic_dataset import tensorboard_add_sample
def test_epoch(model: nn.Module, device: torch.device,
test_loader: torch.utils.data.dataloader.DataLoader,
n_items: int, loss_fn, metrics_fn,
profiling: bool = False, epoch: int = 0,
writer: SummaryWriter = None, data_params = None) -> float:
"""
Evaluate the network.
"""
model.eval()
metrics = {}
with torch.no_grad():
for batch_idx, (mixed, label, gt) in \
enumerate(tqdm(test_loader, desc='Test', ncols=100)):
mixed = mixed.to(device)
label = label.to(device)
gt = gt.to(device)
# Run through the model
with profile(activities=[ProfilerActivity.CPU],
record_shapes=True) as prof:
with record_function("model_inference"):
output = model(mixed, label)
if profiling:
logging.info(
prof.key_averages().table(sort_by="self_cpu_time_total",
row_limit=20))
# Compute loss
loss = loss_fn(output, gt)
# Compute metrics
metrics_batch = metrics_fn(mixed, output, gt)
metrics_batch['loss'] = [loss.item()]
metrics_batch['runtime'] = [prof.profiler.self_cpu_time_total/1000]
for k in metrics_batch.keys():
if not k in metrics:
metrics[k] = metrics_batch[k]
else:
metrics[k] += metrics_batch[k]
if writer is not None:
if batch_idx == 0:
tensorboard_add_sample(
writer, tag='Test',
sample=(mixed[:8], label[:8], gt[:8], output[:8]),
step=epoch, params=data_params)
tensorboard_add_metrics(
writer, tag='Test', metrics=metrics_batch, label=label,
step=epoch)
if n_items is not None and batch_idx == (n_items - 1):
break
avg_metrics = {k: np.mean(metrics[k]) for k in metrics.keys()}
avg_metrics_str = "Test:"
for m in avg_metrics.keys():
avg_metrics_str += ' %s=%.04f' % (m, avg_metrics[m])
logging.info(avg_metrics_str)
return avg_metrics
def evaluate(network, args: argparse.Namespace):
"""
Evaluate the model on a given dataset.
"""
# Load dataset
data_test = FSDSoundScapesDataset(**args.test_data)
logging.info("Loaded test dataset at %s containing %d elements" %
(args.test_data['input_dir'], len(data_test)))
# Set up the device and workers.
use_cuda = args.use_cuda and torch.cuda.is_available()
if use_cuda:
gpu_ids = args.gpu_ids if args.gpu_ids is not None\
else range(torch.cuda.device_count())
device_ids = [_ for _ in gpu_ids]
data_parallel = len(device_ids) > 1
device = 'cuda:%d' % device_ids[0]
torch.cuda.set_device(device_ids[0])
logging.info("Using CUDA devices: %s" % str(device_ids))
else:
data_parallel = False
device = torch.device('cpu')
logging.info("Using device: CPU")
# Set multiprocessing params
num_workers = min(multiprocessing.cpu_count(), args.n_workers)
kwargs = {
'num_workers': num_workers,
'pin_memory': True
} if use_cuda else {}
# Set up data loader
test_loader = torch.utils.data.DataLoader(data_test,
batch_size=args.eval_batch_size,
**kwargs)
# Set up model
model = network.Net(**args.model_params)
if use_cuda and data_parallel:
model = nn.DataParallel(model, device_ids=device_ids)
logging.info("Using data parallel model")
model.to(device)
# Load weights
if args.pretrain_path == "best":
ckpts = glob.glob(os.path.join(args.exp_dir, '*.pt'))
ckpts.sort(
key=lambda _: int(os.path.splitext(os.path.basename(_))[0]))
val_metrics = torch.load(ckpts[-1])['val_metrics'][args.base_metric]
best_epoch = max(range(len(val_metrics)), key=val_metrics.__getitem__)
args.pretrain_path = os.path.join(args.exp_dir, '%d.pt' % best_epoch)
logging.info(
"Found 'best' validation %s=%.02f at %s" %
(args.base_metric, val_metrics[best_epoch], args.pretrain_path))
if args.pretrain_path != "":
utils.load_checkpoint(
args.pretrain_path, model, data_parallel=data_parallel)
logging.info("Loaded pretrain weights from %s" % args.pretrain_path)
# Evaluate
try:
return test_epoch(
model, device, test_loader, args.n_items, network.loss,
network.metrics, args.profiling)
except KeyboardInterrupt:
print("Interrupted")
except Exception as _: # pylint: disable=broad-except
import traceback # pylint: disable=import-outside-toplevel
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
# Data Params
parser.add_argument('experiments', nargs='+', type=str,
default=None,
help="List of experiments to evaluate. "
"Provide only one experiment when providing "
"pretrained path. If pretrianed path is not "
"provided, epoch with best validation metric "
"is used for evaluation.")
parser.add_argument('--results', type=str, default="",
help="Path to the CSV file to store results.")
# System params
parser.add_argument('--n_items', type=int, default=None,
help="Number of items to test.")
parser.add_argument('--pretrain_path', type=str, default="best",
help="Path to pretrained weights")
parser.add_argument('--profiling', dest='profiling', action='store_true',
help="Enable or disable profiling.")
parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
help="Whether to use cuda")
parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
help="List of GPU ids used for training. "
"Eg., --gpu_ids 2 4. All GPUs are used by default.")
args = parser.parse_args()
results = []
for exp_dir in args.experiments:
eval_args = argparse.Namespace(**vars(args))
eval_args.exp_dir = exp_dir
utils.set_logger(os.path.join(exp_dir, 'eval.log'))
logging.info("Evaluating %s ..." % exp_dir)
# Load model and training params
params = utils.Params(os.path.join(exp_dir, 'config.json'))
for k, v in params.__dict__.items():
vars(eval_args)[k] = v
network = importlib.import_module(eval_args.model)
logging.info("Imported the model from '%s'." % eval_args.model)
curr_res = evaluate(network, eval_args)
curr_res['experiment'] = os.path.basename(exp_dir)
results.append(curr_res)
del eval_args
if args.results != "":
print("Writing results to %s" % args.results)
pd.DataFrame(results).to_csv(args.results, index=False)
|