File size: 8,223 Bytes
e6a6383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
"""
Test script to evaluate the model.
"""

import argparse
import importlib
import multiprocessing
import os, glob
import logging

import numpy as np
import torch
import pandas as pd
import torch.nn as nn
from torch.utils.tensorboard import SummaryWriter
from torch.profiler import profile, record_function, ProfilerActivity
from tqdm import tqdm  # pylint: disable=unused-import
from torchmetrics.functional import(
    scale_invariant_signal_noise_ratio as si_snr,
    signal_noise_ratio as snr,
    signal_distortion_ratio as sdr,
    scale_invariant_signal_distortion_ratio as si_sdr)

from src.helpers import utils
from src.training.synthetic_dataset import FSDSoundScapesDataset, tensorboard_add_metrics
from src.training.synthetic_dataset import tensorboard_add_sample

def test_epoch(model: nn.Module, device: torch.device,
               test_loader: torch.utils.data.dataloader.DataLoader,
               n_items: int, loss_fn, metrics_fn,
               profiling: bool = False, epoch: int = 0,
               writer: SummaryWriter = None, data_params = None) -> float:
    """
    Evaluate the network.
    """
    model.eval()
    metrics = {}
 
    with torch.no_grad():
        for batch_idx, (mixed, label, gt) in \
                enumerate(tqdm(test_loader, desc='Test', ncols=100)):
            mixed = mixed.to(device)
            label = label.to(device)
            gt = gt.to(device)

            # Run through the model
            with profile(activities=[ProfilerActivity.CPU],
                         record_shapes=True) as prof:
                with record_function("model_inference"):
                    output = model(mixed, label)
            if profiling:
                logging.info(
                    prof.key_averages().table(sort_by="self_cpu_time_total",
                                              row_limit=20))

            # Compute loss
            loss = loss_fn(output, gt)

            # Compute metrics
            metrics_batch = metrics_fn(mixed, output, gt)
            metrics_batch['loss'] = [loss.item()]
            metrics_batch['runtime'] = [prof.profiler.self_cpu_time_total/1000]
            for k in metrics_batch.keys():
                if not k in metrics:
                    metrics[k] = metrics_batch[k]
                else:
                    metrics[k] += metrics_batch[k]

            if writer is not None:
                if batch_idx == 0:
                    tensorboard_add_sample(
                        writer, tag='Test',
                        sample=(mixed[:8], label[:8], gt[:8], output[:8]),
                        step=epoch, params=data_params)
                tensorboard_add_metrics(
                    writer, tag='Test', metrics=metrics_batch, label=label,
                    step=epoch)

            if n_items is not None and batch_idx == (n_items - 1):
                break

        avg_metrics = {k: np.mean(metrics[k]) for k in metrics.keys()}
        avg_metrics_str = "Test:"
        for m in avg_metrics.keys():
            avg_metrics_str += ' %s=%.04f' % (m, avg_metrics[m])
        logging.info(avg_metrics_str)

        return avg_metrics

def evaluate(network, args: argparse.Namespace):
    """
    Evaluate the model on a given dataset.
    """

    # Load dataset
    data_test = FSDSoundScapesDataset(**args.test_data)
    logging.info("Loaded test dataset at %s containing %d elements" %
                 (args.test_data['input_dir'], len(data_test)))
 
    # Set up the device and workers.
    use_cuda = args.use_cuda and torch.cuda.is_available()
    if use_cuda:
        gpu_ids = args.gpu_ids if args.gpu_ids is not None\
                        else range(torch.cuda.device_count())
        device_ids = [_ for _ in gpu_ids]
        data_parallel = len(device_ids) > 1
        device = 'cuda:%d' % device_ids[0]
        torch.cuda.set_device(device_ids[0])
        logging.info("Using CUDA devices: %s" % str(device_ids))
    else:
        data_parallel = False
        device = torch.device('cpu')
        logging.info("Using device: CPU")

    # Set multiprocessing params
    num_workers = min(multiprocessing.cpu_count(), args.n_workers)
    kwargs = {
        'num_workers': num_workers,
        'pin_memory': True
    } if use_cuda else {}

    # Set up data loader
    test_loader = torch.utils.data.DataLoader(data_test,
                                              batch_size=args.eval_batch_size,
                                              **kwargs)

    # Set up model
    model = network.Net(**args.model_params)
    if use_cuda and data_parallel:
        model = nn.DataParallel(model, device_ids=device_ids)
        logging.info("Using data parallel model")
    model.to(device)

    # Load weights
    if args.pretrain_path == "best":
        ckpts = glob.glob(os.path.join(args.exp_dir, '*.pt'))
        ckpts.sort(
            key=lambda _: int(os.path.splitext(os.path.basename(_))[0]))
        val_metrics = torch.load(ckpts[-1])['val_metrics'][args.base_metric]
        best_epoch = max(range(len(val_metrics)), key=val_metrics.__getitem__)
        args.pretrain_path = os.path.join(args.exp_dir, '%d.pt' % best_epoch)
        logging.info(
            "Found 'best' validation %s=%.02f at %s" %
            (args.base_metric, val_metrics[best_epoch], args.pretrain_path))
    if args.pretrain_path != "":
        utils.load_checkpoint(
            args.pretrain_path, model, data_parallel=data_parallel)
        logging.info("Loaded pretrain weights from %s" % args.pretrain_path)

    # Evaluate
    try:
        return test_epoch(
            model, device, test_loader, args.n_items, network.loss,
            network.metrics, args.profiling)
    except KeyboardInterrupt:
        print("Interrupted")
    except Exception as _:  # pylint: disable=broad-except
        import traceback  # pylint: disable=import-outside-toplevel
        traceback.print_exc()


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    # Data Params
    parser.add_argument('experiments', nargs='+', type=str,
                        default=None,
                        help="List of experiments to evaluate. "
                        "Provide only one experiment when providing "
                        "pretrained path. If pretrianed path is not "
                        "provided, epoch with best validation metric "
                        "is used for evaluation.")
    parser.add_argument('--results', type=str, default="",
                        help="Path to the CSV file to store results.")

    # System params
    parser.add_argument('--n_items', type=int, default=None,
                        help="Number of items to test.")
    parser.add_argument('--pretrain_path', type=str, default="best",
                        help="Path to pretrained weights")
    parser.add_argument('--profiling', dest='profiling', action='store_true',
                        help="Enable or disable profiling.")
    parser.add_argument('--use_cuda', dest='use_cuda', action='store_true',
                        help="Whether to use cuda")
    parser.add_argument('--gpu_ids', nargs='+', type=int, default=None,
                        help="List of GPU ids used for training. "
                        "Eg., --gpu_ids 2 4. All GPUs are used by default.")
    args = parser.parse_args()

    results = []

    for exp_dir in args.experiments:
        eval_args = argparse.Namespace(**vars(args))
        eval_args.exp_dir = exp_dir

        utils.set_logger(os.path.join(exp_dir, 'eval.log'))
        logging.info("Evaluating %s ..." % exp_dir)

        # Load model and training params
        params = utils.Params(os.path.join(exp_dir, 'config.json'))
        for k, v in params.__dict__.items():
            vars(eval_args)[k] = v

        network = importlib.import_module(eval_args.model)
        logging.info("Imported the model from '%s'." % eval_args.model)

        curr_res = evaluate(network, eval_args)
        curr_res['experiment'] = os.path.basename(exp_dir)
        results.append(curr_res)

        del eval_args

    if args.results != "":
        print("Writing results to %s" % args.results)
        pd.DataFrame(results).to_csv(args.results, index=False)