Spaces:
Runtime error
Runtime error
File size: 17,299 Bytes
e6a6383 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import math
from collections import OrderedDict
from typing import Optional
from torch import Tensor
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchmetrics.functional import(
scale_invariant_signal_noise_ratio as si_snr,
signal_noise_ratio as snr,
signal_distortion_ratio as sdr,
scale_invariant_signal_distortion_ratio as si_sdr)
from speechbrain.lobes.models.transformer.Transformer import PositionalEncoding
def mod_pad(x, chunk_size, pad):
# Mod pad the input to perform integer number of
# inferences
mod = 0
if (x.shape[-1] % chunk_size) != 0:
mod = chunk_size - (x.shape[-1] % chunk_size)
x = F.pad(x, (0, mod))
x = F.pad(x, pad)
return x, mod
class LayerNormPermuted(nn.LayerNorm):
def __init__(self, *args, **kwargs):
super(LayerNormPermuted, self).__init__(*args, **kwargs)
def forward(self, x):
"""
Args:
x: [B, C, T]
"""
x = x.permute(0, 2, 1) # [B, T, C]
x = super().forward(x)
x = x.permute(0, 2, 1) # [B, C, T]
return x
class DepthwiseSeparableConv(nn.Module):
"""
Depthwise separable convolutions
"""
def __init__(self, in_channels, out_channels, kernel_size, stride,
padding, dilation):
super(DepthwiseSeparableConv, self).__init__()
self.layers = nn.Sequential(
nn.Conv1d(in_channels, in_channels, kernel_size, stride,
padding, groups=in_channels, dilation=dilation),
LayerNormPermuted(in_channels),
nn.ReLU(),
nn.Conv1d(in_channels, out_channels, kernel_size=1, stride=1,
padding=0),
LayerNormPermuted(out_channels),
nn.ReLU(),
)
def forward(self, x):
return self.layers(x)
class DilatedCausalConvEncoder(nn.Module):
"""
A dilated causal convolution based encoder for encoding
time domain audio input into latent space.
"""
def __init__(self, channels, num_layers, kernel_size=3):
super(DilatedCausalConvEncoder, self).__init__()
self.channels = channels
self.num_layers = num_layers
self.kernel_size = kernel_size
# Compute buffer lengths for each layer
# buf_length[i] = (kernel_size - 1) * dilation[i]
self.buf_lengths = [(kernel_size - 1) * 2**i
for i in range(num_layers)]
# Compute buffer start indices for each layer
self.buf_indices = [0]
for i in range(num_layers - 1):
self.buf_indices.append(
self.buf_indices[-1] + self.buf_lengths[i])
# Dilated causal conv layers aggregate previous context to obtain
# contexful encoded input.
_dcc_layers = OrderedDict()
for i in range(num_layers):
dcc_layer = DepthwiseSeparableConv(
channels, channels, kernel_size=3, stride=1,
padding=0, dilation=2**i)
_dcc_layers.update({'dcc_%d' % i: dcc_layer})
self.dcc_layers = nn.Sequential(_dcc_layers)
def init_ctx_buf(self, batch_size, device):
"""
Returns an initialized context buffer for a given batch size.
"""
return torch.zeros(
(batch_size, self.channels,
(self.kernel_size - 1) * (2**self.num_layers - 1)),
device=device)
def forward(self, x, ctx_buf):
"""
Encodes input audio `x` into latent space, and aggregates
contextual information in `ctx_buf`. Also generates new context
buffer with updated context.
Args:
x: [B, in_channels, T]
Input multi-channel audio.
ctx_buf: {[B, channels, self.buf_length[0]], ...}
A list of tensors holding context for each dilation
causal conv layer. (len(ctx_buf) == self.num_layers)
Returns:
ctx_buf: {[B, channels, self.buf_length[0]], ...}
Updated context buffer with output as the
last element.
"""
T = x.shape[-1] # Sequence length
for i in range(self.num_layers):
buf_start_idx = self.buf_indices[i]
buf_end_idx = self.buf_indices[i] + self.buf_lengths[i]
# DCC input: concatenation of current output and context
dcc_in = torch.cat(
(ctx_buf[..., buf_start_idx:buf_end_idx], x), dim=-1)
# Push current output to the context buffer
ctx_buf[..., buf_start_idx:buf_end_idx] = \
dcc_in[..., -self.buf_lengths[i]:]
# Residual connection
x = x + self.dcc_layers[i](dcc_in)
return x, ctx_buf
class CausalTransformerDecoderLayer(torch.nn.TransformerDecoderLayer):
"""
Adapted from:
"https://github.com/alexmt-scale/causal-transformer-decoder/blob/"
"0caf6ad71c46488f76d89845b0123d2550ef792f/"
"causal_transformer_decoder/model.py#L77"
"""
def forward(
self,
tgt: Tensor,
memory: Optional[Tensor] = None,
chunk_size: int = 1
) -> Tensor:
tgt_last_tok = tgt[:, -chunk_size:, :]
# self attention part
tmp_tgt, sa_map = self.self_attn(
tgt_last_tok,
tgt,
tgt,
attn_mask=None, # not needed because we only care about the last token
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout1(tmp_tgt)
tgt_last_tok = self.norm1(tgt_last_tok)
# encoder-decoder attention
if memory is not None:
tmp_tgt, ca_map = self.multihead_attn(
tgt_last_tok,
memory,
memory,
attn_mask=None, # Attend to the entire chunk
key_padding_mask=None,
)
tgt_last_tok = tgt_last_tok + self.dropout2(tmp_tgt)
tgt_last_tok = self.norm2(tgt_last_tok)
# final feed-forward network
tmp_tgt = self.linear2(
self.dropout(self.activation(self.linear1(tgt_last_tok)))
)
tgt_last_tok = tgt_last_tok + self.dropout3(tmp_tgt)
tgt_last_tok = self.norm3(tgt_last_tok)
return tgt_last_tok, sa_map, ca_map
class CausalTransformerDecoder(nn.Module):
"""
A casual transformer decoder which decodes input vectors using
precisely `ctx_len` past vectors in the sequence, and using no future
vectors at all.
"""
def __init__(self, model_dim, ctx_len, chunk_size, num_layers,
nhead, use_pos_enc, ff_dim):
super(CausalTransformerDecoder, self).__init__()
self.num_layers = num_layers
self.model_dim = model_dim
self.ctx_len = ctx_len
self.chunk_size = chunk_size
self.nhead = nhead
self.use_pos_enc = use_pos_enc
self.unfold = nn.Unfold(kernel_size=(ctx_len + chunk_size, 1), stride=chunk_size)
self.pos_enc = PositionalEncoding(model_dim, max_len=200)
self.tf_dec_layers = nn.ModuleList([CausalTransformerDecoderLayer(
d_model=model_dim, nhead=nhead, dim_feedforward=ff_dim,
batch_first=True) for _ in range(num_layers)])
def init_ctx_buf(self, batch_size, device):
return torch.zeros(
(batch_size, self.num_layers + 1, self.ctx_len, self.model_dim),
device=device)
def _causal_unfold(self, x):
"""
Unfolds the sequence into a batch of sequences
prepended with `ctx_len` previous values.
Args:
x: [B, ctx_len + L, C]
ctx_len: int
Returns:
[B * L, ctx_len + 1, C]
"""
B, T, C = x.shape
x = x.permute(0, 2, 1) # [B, C, ctx_len + L]
x = self.unfold(x.unsqueeze(-1)) # [B, C * (ctx_len + chunk_size), -1]
x = x.permute(0, 2, 1)
x = x.reshape(B, -1, C, self.ctx_len + self.chunk_size)
x = x.reshape(-1, C, self.ctx_len + self.chunk_size)
x = x.permute(0, 2, 1)
return x
def forward(self, tgt, mem, ctx_buf, probe=False):
"""
Args:
x: [B, model_dim, T]
ctx_buf: [B, num_layers, model_dim, ctx_len]
"""
mem, _ = mod_pad(mem, self.chunk_size, (0, 0))
tgt, mod = mod_pad(tgt, self.chunk_size, (0, 0))
# Input sequence length
B, C, T = tgt.shape
tgt = tgt.permute(0, 2, 1)
mem = mem.permute(0, 2, 1)
# Prepend mem with the context
mem = torch.cat((ctx_buf[:, 0, :, :], mem), dim=1)
ctx_buf[:, 0, :, :] = mem[:, -self.ctx_len:, :]
mem_ctx = self._causal_unfold(mem)
if self.use_pos_enc:
mem_ctx = mem_ctx + self.pos_enc(mem_ctx)
# Attention chunk size: required to ensure the model
# wouldn't trigger an out-of-memory error when working
# on long sequences.
K = 1000
for i, tf_dec_layer in enumerate(self.tf_dec_layers):
# Update the tgt with context
tgt = torch.cat((ctx_buf[:, i + 1, :, :], tgt), dim=1)
ctx_buf[:, i + 1, :, :] = tgt[:, -self.ctx_len:, :]
# Compute encoded output
tgt_ctx = self._causal_unfold(tgt)
if self.use_pos_enc and i == 0:
tgt_ctx = tgt_ctx + self.pos_enc(tgt_ctx)
tgt = torch.zeros_like(tgt_ctx)[:, -self.chunk_size:, :]
for i in range(int(math.ceil(tgt.shape[0] / K))):
tgt[i*K:(i+1)*K], _sa_map, _ca_map = tf_dec_layer(
tgt_ctx[i*K:(i+1)*K], mem_ctx[i*K:(i+1)*K],
self.chunk_size)
tgt = tgt.reshape(B, T, C)
tgt = tgt.permute(0, 2, 1)
if mod != 0:
tgt = tgt[..., :-mod]
return tgt, ctx_buf
class MaskNet(nn.Module):
def __init__(self, enc_dim, num_enc_layers, dec_dim, dec_buf_len,
dec_chunk_size, num_dec_layers, use_pos_enc, skip_connection, proj):
super(MaskNet, self).__init__()
self.skip_connection = skip_connection
self.proj = proj
# Encoder based on dilated causal convolutions.
self.encoder = DilatedCausalConvEncoder(channels=enc_dim,
num_layers=num_enc_layers)
# Project between encoder and decoder dimensions
self.proj_e2d_e = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_e2d_l = nn.Sequential(
nn.Conv1d(enc_dim, dec_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
self.proj_d2e = nn.Sequential(
nn.Conv1d(dec_dim, enc_dim, kernel_size=1, stride=1, padding=0,
groups=dec_dim),
nn.ReLU())
# Transformer decoder that operates on chunks of size
# buffer size.
self.decoder = CausalTransformerDecoder(
model_dim=dec_dim, ctx_len=dec_buf_len, chunk_size=dec_chunk_size,
num_layers=num_dec_layers, nhead=8, use_pos_enc=use_pos_enc,
ff_dim=2 * dec_dim)
def forward(self, x, l, enc_buf, dec_buf):
"""
Generates a mask based on encoded input `e` and the one-hot
label `label`.
Args:
x: [B, C, T]
Input audio sequence
l: [B, C]
Label embedding
ctx_buf: {[B, C, <receptive field of the layer>], ...}
List of context buffers maintained by DCC encoder
"""
# Enocder the label integrated input
e, enc_buf = self.encoder(x, enc_buf)
# Label integration
l = l.unsqueeze(2) * e
# Project to `dec_dim` dimensions
if self.proj:
e = self.proj_e2d_e(e)
m = self.proj_e2d_l(l)
# Cross-attention to predict the mask
m, dec_buf = self.decoder(m, e, dec_buf)
else:
# Cross-attention to predict the mask
m, dec_buf = self.decoder(l, e, dec_buf)
# Project mask to encoder dimensions
if self.proj:
m = self.proj_d2e(m)
# Final mask after residual connection
if self.skip_connection:
m = l + m
return m, enc_buf, dec_buf
class Net(nn.Module):
def __init__(self, label_len, L=8,
enc_dim=512, num_enc_layers=10,
dec_dim=256, dec_buf_len=100, num_dec_layers=2,
dec_chunk_size=72, out_buf_len=2,
use_pos_enc=True, skip_connection=True, proj=True, lookahead=True):
super(Net, self).__init__()
self.L = L
self.out_buf_len = out_buf_len
self.enc_dim = enc_dim
self.lookahead = lookahead
# Input conv to convert input audio to a latent representation
kernel_size = 3 * L if lookahead else L
self.in_conv = nn.Sequential(
nn.Conv1d(in_channels=1,
out_channels=enc_dim, kernel_size=kernel_size, stride=L,
padding=0, bias=False),
nn.ReLU())
# Label embedding layer
self.label_embedding = nn.Sequential(
nn.Linear(label_len, 512),
nn.LayerNorm(512),
nn.ReLU(),
nn.Linear(512, enc_dim),
nn.LayerNorm(enc_dim),
nn.ReLU())
# Mask generator
self.mask_gen = MaskNet(
enc_dim=enc_dim, num_enc_layers=num_enc_layers,
dec_dim=dec_dim, dec_buf_len=dec_buf_len,
dec_chunk_size=dec_chunk_size, num_dec_layers=num_dec_layers,
use_pos_enc=use_pos_enc, skip_connection=skip_connection, proj=proj)
# Output conv layer
self.out_conv = nn.Sequential(
nn.ConvTranspose1d(
in_channels=enc_dim, out_channels=1,
kernel_size=(out_buf_len + 1) * L,
stride=L,
padding=out_buf_len * L, bias=False),
nn.Tanh())
def init_buffers(self, batch_size, device):
enc_buf = self.mask_gen.encoder.init_ctx_buf(batch_size, device)
dec_buf = self.mask_gen.decoder.init_ctx_buf(batch_size, device)
out_buf = torch.zeros(batch_size, self.enc_dim, self.out_buf_len,
device=device)
return enc_buf, dec_buf, out_buf
def forward(self, x, label, init_enc_buf=None, init_dec_buf=None,
init_out_buf=None, pad=True):
"""
Extracts the audio corresponding to the `label` in the given
`mixture`. Generates `chunk_size` samples per iteration.
Args:
mixed: [B, n_mics, T]
input audio mixture
label: [B, num_labels]
one hot label
Returns:
out: [B, n_spk, T]
extracted audio with sounds corresponding to the `label`
"""
mod = 0
if pad:
pad_size = (self.L, self.L) if self.lookahead else (0, 0)
x, mod = mod_pad(x, chunk_size=self.L, pad=pad_size)
if init_enc_buf is None or init_dec_buf is None or init_out_buf is None:
assert init_enc_buf is None and \
init_dec_buf is None and \
init_out_buf is None, \
"Both buffers have to initialized, or " \
"both of them have to be None."
enc_buf, dec_buf, out_buf = self.init_buffers(
x.shape[0], x.device)
else:
enc_buf, dec_buf, out_buf = \
init_enc_buf, init_dec_buf, init_out_buf
# Generate latent space representation of the input
x = self.in_conv(x)
# Generate label embedding
l = self.label_embedding(label) # [B, label_len] --> [B, channels]
# Generate mask corresponding to the label
m, enc_buf, dec_buf = self.mask_gen(x, l, enc_buf, dec_buf)
# Apply mask and decode
x = x * m
x = torch.cat((out_buf, x), dim=-1)
out_buf = x[..., -self.out_buf_len:]
x = self.out_conv(x)
# Remove mod padding, if present.
if mod != 0:
x = x[:, :, :-mod]
if init_enc_buf is None:
return x
else:
return x, enc_buf, dec_buf, out_buf
# Define optimizer, loss and metrics
def optimizer(model, data_parallel=False, **kwargs):
return optim.Adam(model.parameters(), **kwargs)
def loss(pred, tgt):
return -0.9 * snr(pred, tgt).mean() - 0.1 * si_snr(pred, tgt).mean()
def metrics(mixed, output, gt):
""" Function to compute metrics """
metrics = {}
def metric_i(metric, src, pred, tgt):
_vals = []
for s, t, p in zip(src, tgt, pred):
_vals.append((metric(p, t) - metric(s, t)).cpu().item())
return _vals
for m_fn in [snr, si_snr]:
metrics[m_fn.__name__] = metric_i(m_fn,
mixed[:, :gt.shape[1], :],
output,
gt)
return metrics
|