File size: 2,919 Bytes
2c0eed0
532dc11
4300fed
 
7ffbb2d
 
4300fed
 
 
2c0eed0
 
1272fd4
1241f18
 
 
 
 
 
 
 
 
532dc11
 
 
 
 
 
 
 
 
 
e04b055
406e977
994df9c
406e977
532dc11
 
 
 
 
 
4300fed
245eecf
4300fed
1eb399c
1241f18
b8401e1
532dc11
 
4300fed
 
e04b055
70cbf96
 
 
881961f
532dc11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
# WebUI by mrfakename
# Demo also available on HF Spaces: https://huggingface.co./spaces/mrfakename/MeloTTS
import gradio as gr
import os, torch, io
os.system('python -m unidic download')
# print("Make sure you've downloaded unidic (python -m unidic download) for this WebUI to work.")
from melo.api import TTS
speed = 1.0
import tempfile
import nltk
nltk.download('averaged_perceptron_tagger_eng')
device = 'cuda' if torch.cuda.is_available() else 'cpu'
models = {
    'EN': TTS(language='EN', device=device),
    'ES': TTS(language='ES', device=device),
    'FR': TTS(language='FR', device=device),
    'ZH': TTS(language='ZH', device=device),
    'JP': TTS(language='JP', device=device),
    'KR': TTS(language='KR', device=device),
}
speaker_ids = models['EN'].hps.data.spk2id

default_text_dict = {
    'EN': 'The field of text-to-speech has seen rapid development recently.',
    'ES': 'El campo de la conversión de texto a voz ha experimentado un rápido desarrollo recientemente.',
    'FR': 'Le domaine de la synthèse vocale a connu un développement rapide récemment',
    'ZH': 'text-to-speech 领域近年来发展迅速',
    'JP': 'テキスト読み上げの分野は最近急速な発展を遂げています',
    'KR': '최근 텍스트 음성 변환 분야가 급속도로 발전하고 있습니다.',    
}
    
def synthesize(text, speaker, speed, language, progress=gr.Progress()):
    bio = io.BytesIO()
    models[language].tts_to_file(text, models[language].hps.data.spk2id[speaker], bio, speed=speed, pbar=progress.tqdm, format='wav')
    return bio.getvalue()
def load_speakers(language, text):
    if text in list(default_text_dict.values()):
        newtext = default_text_dict[language]
    else:
        newtext = text
    return gr.update(value=list(models[language].hps.data.spk2id.keys())[0], choices=list(models[language].hps.data.spk2id.keys())), newtext
with gr.Blocks() as demo:
    gr.Markdown('# MeloTTS Demo\n\nAn unofficial demo for [MeloTTS](https://github.com/myshell-ai/MeloTTS). **Make sure to try out several speakers, for example EN-Default!**')
    with gr.Group():
        speaker = gr.Dropdown(speaker_ids.keys(), interactive=True, value='EN-US', label='Speaker')
        language = gr.Radio(['EN', 'ES', 'FR', 'ZH', 'JP', 'KR'], label='Language', value='EN')
        speed = gr.Slider(label='Speed', minimum=0.1, maximum=10.0, value=1.0, interactive=True, step=0.1)
        text = gr.Textbox(label="Text to speak", value=default_text_dict['EN'])
        language.input(load_speakers, inputs=[language, text], outputs=[speaker, text])
    btn = gr.Button('Synthesize', variant='primary')
    aud = gr.Audio(interactive=False)
    btn.click(synthesize, inputs=[text, speaker, speed, language], outputs=[aud])
    gr.Markdown('Demo by [mrfakename](https://twitter.com/realmrfakename).')


demo.queue(api_open=True, default_concurrency_limit=10).launch(show_api=True)