Update asr.py
Browse files
asr.py
CHANGED
@@ -1,6 +1,5 @@
|
|
1 |
import librosa
|
2 |
-
from transformers import
|
3 |
-
import torch
|
4 |
import logging
|
5 |
|
6 |
# Set up logging
|
@@ -8,14 +7,11 @@ logging.basicConfig(level=logging.DEBUG)
|
|
8 |
|
9 |
ASR_SAMPLING_RATE = 16_000
|
10 |
|
11 |
-
MODEL_ID = "facebook/wav2vec2-large-960h-lv60-self"
|
12 |
-
|
13 |
try:
|
14 |
-
|
15 |
-
|
16 |
-
logging.info("ASR model and processor loaded successfully.")
|
17 |
except Exception as e:
|
18 |
-
logging.error(f"Error loading ASR
|
19 |
|
20 |
def transcribe(audio):
|
21 |
try:
|
@@ -25,17 +21,9 @@ def transcribe(audio):
|
|
25 |
|
26 |
logging.info(f"Loading audio file: {audio}")
|
27 |
audio_samples, _ = librosa.load(audio, sr=ASR_SAMPLING_RATE, mono=True)
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
model.to(device)
|
32 |
-
inputs = inputs.to(device)
|
33 |
-
|
34 |
-
with torch.no_grad():
|
35 |
-
outputs = model(**inputs).logits
|
36 |
-
|
37 |
-
ids = torch.argmax(outputs, dim=-1)[0]
|
38 |
-
transcription = processor.decode(ids)
|
39 |
|
40 |
logging.info("Transcription completed successfully.")
|
41 |
return transcription
|
|
|
1 |
import librosa
|
2 |
+
from transformers import pipeline
|
|
|
3 |
import logging
|
4 |
|
5 |
# Set up logging
|
|
|
7 |
|
8 |
ASR_SAMPLING_RATE = 16_000
|
9 |
|
|
|
|
|
10 |
try:
|
11 |
+
pipe = pipeline("automatic-speech-recognition", model="facebook/mms-1b-all")
|
12 |
+
logging.info("ASR pipeline loaded successfully.")
|
|
|
13 |
except Exception as e:
|
14 |
+
logging.error(f"Error loading ASR pipeline: {e}")
|
15 |
|
16 |
def transcribe(audio):
|
17 |
try:
|
|
|
21 |
|
22 |
logging.info(f"Loading audio file: {audio}")
|
23 |
audio_samples, _ = librosa.load(audio, sr=ASR_SAMPLING_RATE, mono=True)
|
24 |
+
|
25 |
+
# Process the audio with the pipeline
|
26 |
+
transcription = pipe(audio_samples, sampling_rate=ASR_SAMPLING_RATE)["text"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
logging.info("Transcription completed successfully.")
|
29 |
return transcription
|