import os import shutil import subprocess import signal os.environ["GRADIO_ANALYTICS_ENABLED"] = "False" import gradio as gr from huggingface_hub import create_repo, HfApi from huggingface_hub import snapshot_download from huggingface_hub import whoami from huggingface_hub import ModelCard from gradio_huggingfacehub_search import HuggingfaceHubSearch from apscheduler.schedulers.background import BackgroundScheduler from textwrap import dedent HF_TOKEN = os.environ.get("HF_TOKEN") OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME") ollama_pub = f"cat ~/.ollama/id_ed25519.pub" def process_model(model_id, q_method, latest, oauth_token: gr.OAuthToken | None): #def process_model(model_id, q_method, latest): if oauth_token.token is None: raise ValueError("You must be logged in to use GGUF-my-repo") model_name = model_id.split('/')[-1] try: api = HfApi(token=oauth_token.token) dl_pattern = ["*.md", "*.json", "*.model"] pattern = ( "*.safetensors" if any( file.path.endswith(".safetensors") for file in api.list_repo_tree( repo_id=model_id, recursive=True, ) ) else "*.bin" ) dl_pattern += pattern api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern) print("Model downloaded successfully!") print(f"Current working directory: {os.getcwd()}") print(f"Model directory contents: {os.listdir(model_name)}") model_file = '${model_name} + _modelfile' f = open("{model_file}", "w") print(f.write("From {model_id}")) ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{model_id}:{q_method}" ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True) print(ollama_conversion_result) if ollama_conversion_result.returncode != 0: raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}") print("Model converted to Ollama successfully!") ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_id}:{q_method}" ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True) print(ollama_push_result) if ollama_conversion_result.returncode != 0: raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}") print("Model pushed to Ollama library successfully!") if latest == True: ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id}:{q_method} {OLLAMA_USERNAME}/{model_id}:latest" ollama_copy_result = subprocess.run(ollama_copy, shell=True, capture_output=True) print(ollama_push_result) if ollama_conversion_result.returncode != 0: raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}") print("Model pushed to Ollama library successfully!") ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_id}:latest" ollama_push_latest_result = subprocess.run(ollama_push_latest, shell=True, capture_output=True) print(ollama_push_result) if ollama_conversion_result.returncode != 0: raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}") print("Model pushed to Ollama library successfully!") except Exception as e: return (f"Error: {e}", "error.png") finally: shutil.rmtree(model_name, ignore_errors=True) print("Folder cleaned up successfully!") css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;} """ # Create Gradio interface with gr.Blocks(css=css) as demo: gr.Markdown("You must be logged in to use Ollamafy.") gr.LoginButton(min_width=250) model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model", ) q_method = gr.Dropdown( ["Q3_k_s", "Q3_k_m", "Q3_k_l", "Q4_0", "Q4_1", "Q4_k_s", "Q4_k_m", "Q5_0", "Q5_1", "Q5_k_s", "Q5_k_m", "Q6_k","Q8_0"], label="Quantization Method", info="Ollama Quantization Types", value="ALL", filterable=False, visible=True ) latest = gr.Checkbox( value=False, label="latest", info="Copy Model to :latest" ) iface = gr.Interface( fn=process_model, inputs=[ model_id, q_method, latest, ], outputs=[ gr.Markdown(label="output"), gr.Image(show_label=False), ], title="Create your own Ollama Models and Push them to the Ollama Library, blazingly fast ⚡!", description=ollama_pub, api_name=False ) #username = whoami(oauth_token.token)["name"] def restart_space(): HfApi().restart_space(repo_id="unclemusclez/ollamafy", token=HF_TOKEN, factory_reboot=True) scheduler = BackgroundScheduler() scheduler.add_job(restart_space, "interval", seconds=21600) scheduler.start() # Launch the interface demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)