unclemusclez commited on
Commit
fe3e2a9
·
verified ·
1 Parent(s): d68be0e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -15
app.py CHANGED
@@ -2,6 +2,7 @@ import os
2
  import shutil
3
  import subprocess
4
  import signal
 
5
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
6
  import gradio as gr
7
 
@@ -11,16 +12,12 @@ from huggingface_hub import whoami
11
  from huggingface_hub import ModelCard
12
 
13
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
14
-
15
  from apscheduler.schedulers.background import BackgroundScheduler
16
-
17
  from textwrap import dedent
18
 
19
  HF_TOKEN = os.environ.get("HF_TOKEN")
20
  OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
21
  ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
22
- ollama_q_methods = ["FP16","Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"]
23
-
24
 
25
  def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
26
  if oauth_token.token is None:
@@ -30,9 +27,7 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
30
 
31
  try:
32
  api = HfApi(token=oauth_token.token)
33
-
34
  dl_pattern = ["*.md", "*.json", "*.model"]
35
-
36
  pattern = (
37
  "*.safetensors"
38
  if any(
@@ -44,8 +39,8 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
44
  )
45
  else "*.bin"
46
  )
47
-
48
  dl_pattern += pattern
 
49
  if not os.path.isfile(fp16):
50
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
51
  print("Model downloaded successfully!")
@@ -81,11 +76,13 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
81
  ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
82
  else:
83
  ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
 
84
  ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
85
  print(ollama_conversion_result)
86
  if ollama_conversion_result.returncode != 0:
87
  raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
88
- print("Model converted to Ollama successfully!")
 
89
 
90
  if maintainer:
91
  ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
@@ -97,15 +94,17 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
97
  ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
98
  print(ollama_push_result)
99
  if ollama_push_result.returncode != 0:
100
- raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
101
- print("Model pushed to Ollama library successfully!")
 
102
 
103
  ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True)
104
  print(ollama_rm_result)
105
  if ollama_rm_result.returncode != 0:
106
  raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}")
107
- print("Model pushed to Ollama library successfully!")
108
-
 
109
 
110
  if latest:
111
  ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
@@ -115,7 +114,7 @@ def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth
115
  raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
116
  print("Model pushed to Ollama library successfully!")
117
 
118
- if maintainer == True:
119
  ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
120
  ollama_rm_latest = f"ollama rm {OLLAMA_USERNAME}/{model_name}:latest"
121
  else:
@@ -159,7 +158,7 @@ with gr.Blocks(css=css) as demo:
159
  )
160
 
161
  ollama_q_method = gr.Dropdown(
162
- ollama_q_methods,
163
  label="Ollama Lastest Quantization Method",
164
  info="Chose which quantization will be labled with the latest tag in the Ollama Library",
165
  value="FP16",
@@ -176,7 +175,7 @@ with gr.Blocks(css=css) as demo:
176
  maintainer = gr.Checkbox(
177
  value=False,
178
  label="Maintainer",
179
- info="This is your original repository on both Hugging Face and Ollama. (DO NOT USE!!!)"
180
  )
181
 
182
  iface = gr.Interface(
 
2
  import shutil
3
  import subprocess
4
  import signal
5
+
6
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
7
  import gradio as gr
8
 
 
12
  from huggingface_hub import ModelCard
13
 
14
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
 
15
  from apscheduler.schedulers.background import BackgroundScheduler
 
16
  from textwrap import dedent
17
 
18
  HF_TOKEN = os.environ.get("HF_TOKEN")
19
  OLLAMA_USERNAME = os.environ.get("OLLAMA_USERNAME").lower()
20
  ollama_pubkey = open("/home/user/.ollama/id_ed25519.pub", "r")
 
 
21
 
22
  def process_model(model_id, ollamafy, ollama_q_method, latest, maintainer, oauth_token: gr.OAuthToken | None):
23
  if oauth_token.token is None:
 
27
 
28
  try:
29
  api = HfApi(token=oauth_token.token)
 
30
  dl_pattern = ["*.md", "*.json", "*.model"]
 
31
  pattern = (
32
  "*.safetensors"
33
  if any(
 
39
  )
40
  else "*.bin"
41
  )
 
42
  dl_pattern += pattern
43
+
44
  if not os.path.isfile(fp16):
45
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
46
  print("Model downloaded successfully!")
 
76
  ollama_conversion = f"ollama create -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
77
  else:
78
  ollama_conversion = f"ollama create -q {ollama_q_method} -f {model_file} {OLLAMA_USERNAME}/{ollama_model_name}:{ollama_q_method.lower()}"
79
+
80
  ollama_conversion_result = subprocess.run(ollama_conversion, shell=True, capture_output=True)
81
  print(ollama_conversion_result)
82
  if ollama_conversion_result.returncode != 0:
83
  raise Exception(f"Error converting to Ollama: {ollama_conversion_result.stderr}")
84
+ else:
85
+ print("Model converted to Ollama successfully!")
86
 
87
  if maintainer:
88
  ollama_push = f"ollama push {OLLAMA_USERNAME}/{model_name}:{q_method.lower()}"
 
94
  ollama_push_result = subprocess.run(ollama_push, shell=True, capture_output=True)
95
  print(ollama_push_result)
96
  if ollama_push_result.returncode != 0:
97
+ raise Exception(f"Error pushing to Ollama: {ollama_push_result.stderr}")
98
+ else:
99
+ print("Model pushed to Ollama library successfully!")
100
 
101
  ollama_rm_result = subprocess.run(ollama_rm, shell=True, capture_output=True)
102
  print(ollama_rm_result)
103
  if ollama_rm_result.returncode != 0:
104
  raise Exception(f"Error removing to Ollama: {ollama_rm_result.stderr}")
105
+ else:
106
+ print("Model pushed to Ollama library successfully!")
107
+
108
 
109
  if latest:
110
  ollama_copy = f"ollama cp {OLLAMA_USERNAME}/{model_id.lower()}:{q_method.lower()} {OLLAMA_USERNAME}/{model_id.lower()}:latest"
 
114
  raise Exception(f"Error converting to Ollama: {ollama_push_result.stderr}")
115
  print("Model pushed to Ollama library successfully!")
116
 
117
+ if maintainer:
118
  ollama_push_latest = f"ollama push {OLLAMA_USERNAME}/{model_name}:latest"
119
  ollama_rm_latest = f"ollama rm {OLLAMA_USERNAME}/{model_name}:latest"
120
  else:
 
158
  )
159
 
160
  ollama_q_method = gr.Dropdown(
161
+ ["FP16", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_1", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_1", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
162
  label="Ollama Lastest Quantization Method",
163
  info="Chose which quantization will be labled with the latest tag in the Ollama Library",
164
  value="FP16",
 
175
  maintainer = gr.Checkbox(
176
  value=False,
177
  label="Maintainer",
178
+ info="This is your original repository on both Hugging Face and Ollama. DO NOT USE Unless same USERNAME on both platforms!!!"
179
  )
180
 
181
  iface = gr.Interface(