import gradio as gr from huggingface_hub import InferenceClient, login, snapshot_download from langchain_community.vectorstores import FAISS from langchain_huggingface import HuggingFaceEmbeddings import os import pandas as pd """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference """ login(token=os.getenv('TOKEN')) #model = "meta-llama/Llama-3.2-1B-Instruct" #model = "mistralai/Mistral-7B-Instruct-v0.3" model = "google/mt5-small" client = InferenceClient(model) folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd()) embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small") vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, score, ): messages = [{"role": "system", "content": system_message}] print(system_message) retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score}) documents = retriever.invoke(message) spacer = " \n" context = "" for doc in documents[:3]: case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0] context += "Case number: " + doc.metadata["case_nb"] + spacer context += "Case date: " + doc.metadata["case_date"] + spacer context += "Case url: " + doc.metadata["case_url"] + spacer context += "Case text: " + case_text + spacer message = f""" A user is asking you the following question: {message} Please answer the user in the same language that he used in his question. Use the following context collected from various Swiss federal jurisprudence cases: {context} Please mention your sources in your answer, including the urls and dates. Always answer the user using the language used in his question which was: {message} """ print(message) # for val in history: # if val[0]: # messages.append({"role": "user", "content": val[0]}) # if val[1]: # messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"), gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"), ], description="# 📜 ALexI: Artificial Legal Intelligence for Swiss Jurisprudence", ) if __name__ == "__main__": demo.launch(debug=True)