|
import gradio as gr |
|
from huggingface_hub import InferenceClient, login, snapshot_download |
|
from langchain_community.vectorstores import FAISS |
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
import os |
|
import pandas as pd |
|
|
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co./docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
login(token=os.getenv('TOKEN')) |
|
|
|
|
|
|
|
model = "google/mt5-small" |
|
|
|
client = InferenceClient(model) |
|
|
|
folder = snapshot_download(repo_id="umaiku/faiss_index", repo_type="dataset", local_dir=os.getcwd()) |
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-small") |
|
|
|
vector_db = FAISS.load_local("faiss_index", embeddings, allow_dangerous_deserialization=True) |
|
|
|
df = pd.read_csv("faiss_index/bger_cedh_db 1954-2024.csv") |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
score, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
print(system_message) |
|
|
|
retriever = vector_db.as_retriever(search_type="similarity_score_threshold", search_kwargs={"score_threshold": score}) |
|
documents = retriever.invoke(message) |
|
|
|
spacer = " \n" |
|
|
|
context = "" |
|
|
|
for doc in documents[:3]: |
|
case_text = df[df["case_url"] == doc.metadata["case_url"]].case_text.values[0] |
|
|
|
context += "Case number: " + doc.metadata["case_nb"] + spacer |
|
context += "Case date: " + doc.metadata["case_date"] + spacer |
|
context += "Case url: " + doc.metadata["case_url"] + spacer |
|
context += "Case text: " + case_text + spacer |
|
|
|
message = f""" |
|
A user is asking you the following question: {message} |
|
Please answer the user in the same language that he used in his question. |
|
Use the following context collected from various Swiss federal jurisprudence cases: |
|
{context} |
|
Please mention your sources in your answer, including the urls and dates. |
|
Always answer the user using the language used in his question which was: {message} |
|
""" |
|
|
|
print(message) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
token = message.choices[0].delta.content |
|
|
|
response += token |
|
yield response |
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are an assistant in Swiss Jurisprudence cases.", label="System message"), |
|
gr.Slider(minimum=1, maximum=24000, value=5000, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
gr.Slider(minimum=0, maximum=1, value=0.7, step=0.1, label="Score Threshold"), |
|
], |
|
description="# π ALexI: Artificial Legal Intelligence for Swiss Jurisprudence", |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch(debug=True) |