Ulaş Dilek commited on
Commit
802f7a2
·
1 Parent(s): 71680ec

added app files

Browse files
Files changed (4) hide show
  1. .gitignore +4 -0
  2. README.md +37 -2
  3. app.py +90 -0
  4. util.py +113 -0
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ __pycache__
2
+ .env
3
+ venv
4
+ flagged
README.md CHANGED
@@ -2,7 +2,7 @@
2
  title: Gpt Claude Dialogue
3
  emoji: 📚
4
  colorFrom: purple
5
- colorTo: yellow
6
  sdk: gradio
7
  sdk_version: 3.28.2
8
  app_file: app.py
@@ -10,4 +10,39 @@ pinned: false
10
  license: mit
11
  ---
12
 
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  title: Gpt Claude Dialogue
3
  emoji: 📚
4
  colorFrom: purple
5
+ colorTo: blue
6
  sdk: gradio
7
  sdk_version: 3.28.2
8
  app_file: app.py
 
10
  license: mit
11
  ---
12
 
13
+ # GPT-3.5 Turbo and Claude-v1.3 Dialogue
14
+
15
+ This app uses the OpenAI API and the Anthropic API to generate responses between the two AI models. The user can type in a context and see GPT-3.5 Turbo and Claude-v1.3 have a generated conversation with each other.
16
+
17
+ Enjoy the chaos! Let me know if you have any issues running the app.
18
+
19
+ To run this app locally:
20
+
21
+ 1. Clone this repository
22
+
23
+ 2. Install the requirements:
24
+
25
+ ```bash
26
+ pip install gradio python-dotenv openai anthropic
27
+ ```
28
+
29
+ 3. Obtain API keys for:
30
+ - OpenAI's API
31
+ - Anthropic's API
32
+
33
+ 4. Add the API keys to a file called `.env` with the variables:
34
+
35
+ ```
36
+ OPENAI_API_KEY="YOUR_OPENAI_API_KEY"
37
+ CLAUDE_API_KEY="YOUR_CLAUDE_API_KEY"
38
+ ```
39
+
40
+ 5. Run the gradio app:
41
+
42
+ ```bash
43
+ gradio run app.py
44
+ ```
45
+
46
+ 6. The gradio app will launch in your browser. Type a context to start a conversation between GPT-3.5 Turbo and Claude-v1.3!
47
+
48
+ 7. To close the app, stop the process in your terminal.
app.py ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from dotenv import load_dotenv
3
+ import os
4
+ import anthropic
5
+ import openai
6
+ from util import ClaudeCompletion, GPTCompletion
7
+
8
+ gr.close_all()
9
+
10
+ load_dotenv()
11
+ CLAUDE_API_KEY = os.environ["CLAUDE_API_KEY"]
12
+ openai.api_key = os.environ["OPENAI_API_KEY"]
13
+
14
+ claudeClient = anthropic.Client(CLAUDE_API_KEY)
15
+
16
+ def talkToClaude(prompt):
17
+ completion = ClaudeCompletion(prompt, max_tokens_to_sample=1024)
18
+ claudeResponse = completion.execute(claudeClient)
19
+ return claudeResponse
20
+
21
+ def chatWithClaude(chatHistory):
22
+ completion = ClaudeCompletion("", max_tokens_to_sample=2048, temperature=0.5)
23
+ claudeResponse = completion.chatComplete(claudeClient, chatHistory)
24
+ lastMessage = chatHistory[-1][0]
25
+ chatHistory.pop()
26
+ chatHistory.append((lastMessage, claudeResponse))
27
+ return chatHistory
28
+
29
+ def startNewChat(system, chatHistory):
30
+ systemMes = "You are a human chatting with an AI assistant. This is the context of your conversation: " + system
31
+ completion = GPTCompletion(system=systemMes, max_tokens=2048, temperature=1.5)
32
+ gptResponse = completion.chatComplete(chatHistory, firstMessage="Hi, I am an AI assistant. How can I help you?")
33
+ chatHistory.append((gptResponse, ""))
34
+ return chatHistory
35
+
36
+ def chatWithGPT(chatHistory):
37
+ completion = GPTCompletion(system="You are a human chatting with an AI assistant.", max_tokens=2048, temperature=1.5)
38
+ gptResponse = completion.chatComplete(chatHistory)
39
+ chatHistory.append((gptResponse, ""))
40
+ return chatHistory
41
+
42
+ with gr.Blocks() as demo:
43
+ chatHistory = []
44
+ gptsTurn = True
45
+
46
+ def startConversation(prompt):
47
+ global chatHistory, gptsTurn
48
+ # nextBtn.interactive = False
49
+ chatHistory = []
50
+ startNewChat(prompt, chatHistory)
51
+ # nextBtn.interactive = True
52
+ gptsTurn = False
53
+ return chatHistory
54
+
55
+ def nextResponse():
56
+ global gptsTurn
57
+ # nextBtn.interactive = False
58
+ if (gptsTurn):
59
+ chatWithGPT(chatHistory)
60
+ else:
61
+ chatWithClaude(chatHistory)
62
+ gptsTurn = not gptsTurn
63
+ # nextBtn.interactive = True
64
+ return chatHistory
65
+
66
+ context = gr.Textbox(label="Context",
67
+ placeholder="Set the context for two LLMs to chat with each other",
68
+ info="OpenAI's gpt-3.5-turbo model with chat completion and Anthropic's claude-v1.3 text completion model will talk to each other. Context will be integrated into GPT's system message for the first line of the dialoge and will be scrapped afterwards. The two LLM's are expected to keep the conversation going based on the conversation history. Clicking \"Start conversation\" will reset the conversation and bring the first message. Then, clicking \"Next response\" will bring the next line of the dialogue.")
69
+ start_button = gr.Button("Start conversation")
70
+
71
+ chatbot = gr.Chatbot().style(height=460)
72
+ nextBtn = gr.Button("Next response")
73
+ examples = gr.Examples(
74
+ ["A person is interested in Formula 1 and asks questions about the sport",
75
+ "A little child wants to understand how planes fly",
76
+ "You are a young indie game dev searching for ideas about their next strategy game",
77
+ "You are an old irish man is interested in medieval european history"]
78
+ , context)
79
+ # nextBtn.interactive = False
80
+ start_button.click(startConversation, context, chatbot, scroll_to_output=True, show_progress=True)
81
+ nextBtn.click(nextResponse, None, chatbot, scroll_to_output=True, show_progress=True)
82
+
83
+ try:
84
+ demo.launch(share=True)
85
+ except KeyboardInterrupt:
86
+ demo.close()
87
+ except Exception as e:
88
+ print(e)
89
+ demo.close()
90
+ gr.close_all()
util.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import anthropic
2
+ import openai
3
+
4
+ class ClaudeCompletion:
5
+ def __init__(
6
+ self,
7
+ prompt,
8
+ model="claude-v1.3",
9
+ max_tokens_to_sample=256,
10
+ stop_sequences=[anthropic.HUMAN_PROMPT],
11
+ stream=False,
12
+ temperature=1.0,
13
+ top_k=-1,
14
+ top_p=-1
15
+ ):
16
+ self.model = model
17
+ self.prompt = prompt
18
+ self.max_tokens_to_sample = max_tokens_to_sample
19
+ self.stop_sequences = stop_sequences
20
+ self.stream = stream
21
+ self.temperature = temperature
22
+ self.top_k = top_k
23
+ self.top_p = top_p
24
+
25
+
26
+ def execute(self, claudeClient):
27
+
28
+ response = claudeClient.completion(
29
+ prompt = f"{anthropic.HUMAN_PROMPT} {self.prompt} {anthropic.AI_PROMPT}",
30
+ model = self.model,
31
+ max_tokens_to_sample = self.max_tokens_to_sample,
32
+ stop_sequences = self.stop_sequences,
33
+ steam = self.stream,
34
+ temperature = self.temperature,
35
+ top_k = self.top_k,
36
+ top_p = self.top_p,
37
+ )
38
+ return response["completion"].strip()
39
+
40
+
41
+ def chatComplete(self, claudeClient, chatHistory):
42
+
43
+ for i in range(len(chatHistory)-1):
44
+ self.prompt = self.prompt + f"{anthropic.HUMAN_PROMPT} {chatHistory[i][0]} {anthropic.AI_PROMPT}"
45
+ self.prompt = self.prompt + f"{anthropic.AI_PROMPT} {chatHistory[i][1]}"
46
+ self.prompt = self.prompt + f"{anthropic.HUMAN_PROMPT} {chatHistory[-1][0]} {anthropic.AI_PROMPT}"
47
+
48
+ # print("------------anthropic------------")
49
+ # print(self.prompt)
50
+
51
+ response = claudeClient.completion(
52
+ prompt = self.prompt,
53
+ model = self.model,
54
+ max_tokens_to_sample = self.max_tokens_to_sample,
55
+ stop_sequences = self.stop_sequences,
56
+ steam = self.stream,
57
+ temperature = self.temperature,
58
+ top_k = self.top_k,
59
+ top_p = self.top_p,
60
+ )
61
+ return response["completion"].strip()
62
+
63
+ class GPTCompletion:
64
+ def __init__(
65
+ self,
66
+ system="You are a helpful AI assistant",
67
+ model="gpt-3.5-turbo",
68
+ temperature=1.0,
69
+ top_p=1.0,
70
+ n=1,
71
+ stream=False,
72
+ stop=None,
73
+ max_tokens=256,
74
+ presence_penalty=0.0,
75
+ frequency_penalty=0.0,
76
+ logit_bias={}
77
+ ):
78
+ self.system = system
79
+ self.model = model
80
+ self.messages = [{"role": "system", "content": f"{self.system}"}]
81
+ self.temperature = temperature
82
+ self.top_p = top_p
83
+ self.n = n
84
+ self.stream = stream
85
+ self.stop = stop
86
+ self.max_tokens = max_tokens
87
+ self.presence_penalty = presence_penalty
88
+ self.frequency_penalty = frequency_penalty
89
+ self.logit_bias = logit_bias
90
+
91
+
92
+ def chatComplete(self, chatHistory, firstMessage=""):
93
+
94
+ self.messages.append({"role": "user", "content": f"{firstMessage}"})
95
+ for i in range(len(chatHistory)):
96
+ self.messages.append({"role": "assistant", "content": f"{chatHistory[i][0]}"})
97
+ self.messages.append({"role": "user", "content": f"{chatHistory[i][1]}"})
98
+
99
+ response = openai.ChatCompletion.create(
100
+ model=self.model,
101
+ messages=self.messages,
102
+ temperature=self.temperature,
103
+ top_p=self.top_p,
104
+ n=self.n,
105
+ stream=self.stream,
106
+ stop=self.stop,
107
+ max_tokens=self.max_tokens,
108
+ presence_penalty=self.presence_penalty,
109
+ frequency_penalty=self.frequency_penalty,
110
+ logit_bias=self.logit_bias
111
+ )
112
+
113
+ return response["choices"][0].message["content"].strip()